1. **Verifying Solutions:** You should be able to verify that a given function satisfies an initial value problem. Example: \(y = xe^x \) satisfies \(y'' - 2y' + y = 0 \) with \(y(0) = 0, y'(0) = 1 \). To verify a solution, compute \(y' \) and \(y'' \) and substitute them in to the differential equation to see that it is satisfied and then check that the initial conditions also hold.

2. **Existence and Uniqueness Theorem:** The theorem says that the initial value problem \(y' = f(t, y), y(t_0) = y_0 \) has a unique solution (that is, a solution exists and is unique) if \(f \) and \(\frac{\partial f}{\partial y} \) are continuous on some rectangle containing \((t_0, y_0) \). If \(f \) and \(\frac{\partial f}{\partial y} \) are not continuous near \((t_0, y_0) \) (in particular AT \((t_0, y_0) \)) then anything could happen: there may be no solution, one solution or many solutions.

Example: \(y' = te^y \) will have unique solutions for any initial conditions, while \(y' = \frac{t}{y} \) may not have a unique solution to the initial value problem \(y(t_0) = 0 \), since \(f \) is not continuous at \(y = 0 \).

3. **First Order Linear Equations:** Equations of the form \(y' + p(x)y = f(x) \) can be solved by multiplying both sides by the integrating factor \(\mu = e^{\int p(x)dx} \), which then yields the equation \(\frac{d}{dx} (\mu y) = \mu f(x) \) which is then integrated to yield \(\mu y = \int \mu f(x)dx \) or \(y = \frac{1}{\mu} \left(C + \int \mu f(x)dx \right) \) or \(y = e^{-\int p(x)dx} \left(C + \int f(x)e^{\int p(x)dx}dx \right) \). I think it is better to memorize the method rather than the above formula.

4. **Separation of Variables:** If a first order DE can be written in the form \(N(y)dy = M(x)dx \) then we can obtain a family of implicit solutions of the form \(\int N(y)dy = \int M(x)dx + C \).

Sometimes we won’t find all of the solutions, but this will give an infinite family of solutions.

5. **Mixing Problems:** Note: Upon further review, I have decided to reinstate this type of problem for the exam. If a substance is being added and removed from a solution then the amount of substance in the solution, \(Q(t) \) is governed by the equation \(\frac{dQ}{dt} = \text{RATE IN} - \text{RATE OUT} \).

For nice examples we can solve this DE to find the amount of substance in the solution at any time \(t \).

6. **Exact Equations:** A differential equation \(Mdx + Ndy = 0 \) is exact if \(\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \). In this case we can find a function of two variable \(\psi \) so that \(\frac{\partial \psi}{\partial x} = M \) and \(\frac{\partial \psi}{\partial y} = N \) and solutions to the DE are given by \(\psi(x, y) = c \) where \(c \) is a constant. To find \(\psi \) we compute: \(\psi = \int Mdx + g(y) \) where \(g(y) \) is some function to be determined by the equation \(\frac{\partial \psi}{\partial y} = N \).
Example: $3x^2y^2dx + (2x^3y + e^y)dy$ can be shown to be exact and so

$$\psi = \int 3x^2y^2dx + g(y) = x^3y^2 + g(y)$$

Next we differentiate by y to get $N = 2x^3y^2 + g'(y)$ and hence $g'(y) = e^y$ or $g(y) = e^y$ and hence $\psi = x^3y^2 + e^y$ and the solution to the DE is $x^3y^2 + e^y = c$.

7. **Direction Fields and autonomous equations**: You should be able to sketch a direction field. Given an autonomous equation, such as $y' = y^3 - 4y$, you should be able to find the equilibrium solutions, determine whether they are stable or unstable and be able to sketch solutions for various initial conditions.

8. **Linear Second Order DE**: You should know the general form of a second order linear differential equation: $y'' + p(t)y' + q(t)y = g(t)$ and what the corresponding homogeneous equation is. A fundamental set of solutions of a homogeneous second order linear differential equation is a set of two linearly independent functions y_1 and y_2 which both solve the equation $y'' + p(x)y' + q(x)y = 0$ and whose Wronskian is non-zero. The Wronskian is

$$W(y_1, y_2)(x) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1y_2' - y_2y_1'$$

y_1 and y_2 are a fundamental system precisely when this Wronskian is non-zero. Every solution to the homogeneous equation is of the form $y = c_1y_1 + c_2y_2$ for some c_1 and c_2.

9. **2nd Order with Constant Coefficients**: I expect you to be able to solve any eqn of the form $ay'' + by' + cy = 0$, and to interpret the results, that is, are the solutions periodic, do they tend to zero or infinity as $t \to \infty$, etc.

10. **Undetermined Coefficients**: You need to understand theorems 3.6.1 and 1.6.2 be able to use undetermined coefficients to solve an equation.

 Formulas

 I will provide the formulas:

 $$\mu_x = \frac{M_y - N_x}{N} \mu, \quad \mu_y = \frac{N_x - M_y}{M} \mu$$

 which are useful in finding integrating factors for non-exact equations.