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1 Introduction

There are lots of excellent books on satellite radar
processing–in particular, check out the SAR “bible”
of Curlander and McDonough [CM91], which is
packed full of equations and exciting mathemat-
ics. For more pictures and slightly fewer integrals,
see Francheschetti and Lanari’s recent book [FL99].
Our own Coert Olmsted wrote the relatively read-
able “Scientific SAR User’s Guide” [Olm93] back in
1993. If you’re looking for a complete, end-to-end
guide to SAR, check these things out.

If you’re just looking for the bottom line, or you’ve
stared in slack-jawed horror at the hairy integrals in
the above references, you’ve come to the right place!
This is an informal guide to SAR processing in prac-
tice, and I will justify every equation.

2 Triangles for SAR

As you can see in this document, there are lots and
lots of triangles used in SAR processing.

Everybody knows the Pythagorean Theorem,
which relates the lengths of a right1 triangle’s hy-
potenusec to the lengths of its other sidesa andb,
as shown in Figure 1 (A).

c2 = a2 + b2

This is easy to remember, but it’s rare that you
have a perfect right triangle. More often, you get
a triangle with some arbitrary angleθ not equal to
90 degrees, like in Figure 1 (B). Luckily, there’s a
slightly modified version of the Pythagorean Theo-
rem that works for all triangles (not just right trian-
gles) called the “Law of Cosines”:

c2 = a2 + b2 − 2 a b cos θ

1Right triangle = 90 degree angle

The triangle we’re usually interested in is formed
by these three points: the SAR satellite, the center
of the Earth, and the “target” point being observed
on the Earth’s surface. A cross-section of a SAR
scene like this is shown in Figure 1 (C). The Law
of Cosines as written above thus directly translates
to a SAR scene by relating the slant ranges to the
“earth angle”α.

s2 = e2 + h2 − 2eh cos α

α = cos−1

(
e2 + h2 − s2

2eh

)
But we can compute more angles by switching

which side we define asc while applying the Law
of Cosines–this can give us any of the angles in the
triangle. Hence we can relate the Earth radiuse to
the “look angle”l.

e2 = s2 + h2 − 2sh cos l

l = cos−1

(
s2 + h2 − e2

2sh

)
The incidence anglei isn’t quite as easy, since it’s

measured from straight up. If we ignore the varia-
tion in “up” due to the ellipsoid and geoid, we can
compute the incidence angle as the complement of
the angle inside the triangle, like this:

h2 = s2 + e2 − 2se cos(π − i)

i = π − cos−1

(
s2 + e2 − h2

2se

)
Where to summarize, our notation is:

• e Earth radius; distance from center of earth to
target, meters.
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Figure 1: (A) a simple right triangle, to illustrate the Pythagorean Theorem. (B) a non-right triangle, to
illustrate the Law of Cosines. (C) application of the law of cosines to a SAR observation.

• s Slant range; distance from satellite to target,
meters.

• h height of satellite; distance from satellite to
center of Earth, meters. Can be computed
from the state vector XYZ position ash =√

x2 + y2 + z2.

• α ground angle; angle between nadir and target
as measured from the center of the Earth, radi-
ans.

• i Incidence angle; angle from straight up over
to satellite, as measured from the target point,
radians.

• l Look angle; angle from straight down over to
target, as measured from the satellite, radians.

3 Geocoding

So you’ve finally processed a SAR image. You want
to relate the pixels in the SAR image to some chunk
of dirt on the surface of the Earth. Good luck! This
is one of the trickiest operations in SAR–even pro-
duction and commercial software regularly mangles
these operations.

3.1 State Vectors

A “state vector” is just the position and velocity of
the satellite at a particular time. The trickiest part
about state vectors is figuring out the coordinate sys-
tem they’re measured in.

As show in Figure 2, both inertial and fixed-
earth coordinate systems are useful in different sit-
uations. The ASF tools routinesgei2fixed and
fixed2gei convert between these coordinate sys-
tems, including both “GHA rotation” and the myste-
rious “Coriolis term” as described in Appendix A.
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Figure 2: The same satellite pass plotted in both Inertial and Earth-fixed coordinate systems. In an inertial
coordinate system, the axes don’t move relative to the stars, so orbits are simple; but the Earth does rotate,
so ground tracks are weird. In an Earth-fixed coordinate system, the axes are stationary relative to the Earth,
so ground tracks are simple; but orbits are weird.

3.2 Doppler to Azimuth Position

r
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Figure 3: A SAR satellite moving at a velocity of
vst relative to the ground sees a target at ranger and
azimutha.

There’s a nice little scalar equation that relates
doppler (e.g., found during SAR processing) to the
target’s along-track position.

fD =
2 vst a

λ r

a =
fD λ r

2 vst

• fD doppler shift of echo radiation, Hz.

• vst magnitude of fixed-earth spacecraft velocity,
m/s.

• a target’s azimuth location, as measured along
the spacecraft’s fixed-earth velocity vector, in
meters.a = 0 lies in the plane perpendicular to
the satellite’s fixed-earth velocity. Also known
as the “along-track distance”.

• λ wavelength of radiation, m.

• r slant range to target, m.

Rationale: See Figure 4.vrel = vst a/r is the rel-
ative velocity of the target along the spacecraft’s line
of sight. Dividing byλ/2 turns this closing velocity
into a frequency shift.

References: Stare at [CM91] Fig 1.8 to understand
the geometry. [CM91] Eq 1.2.4 incorrectly implies
that this is an approximation—it’s actually exact as
defined above (if you’re willing to ignore relativity).
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Figure 4: Similar triangles showing thata/r equals
vrel/vst. Compare to Figure 3. We’ve flipped to
imagining a stationary satellite and moving target,
and project the target’s velocity into the satellite
range direction.

4 Interferometry

SAR “interferometry” examines the phase relation-
ship between two or more satellite images to deter-
mine target motion or deformation, surface topogra-
phy, and decorrelation. Or, phrased in a more depres-
sion fashion, the phase in a given interferogram rep-
resents an unknown combination of target motion,
surface topography, and random decorrelation phase.
Hence often in interferometry, we must make some
effort to

4.1 Target Motion

The simplest case for interferometry is when both
satellite images are aquired from the same loca-
tion, and the phase relationship is caused by tar-
get motion. The key parameter here is the “path
length difference”–the extra total distance travelled
by the radiation in the second image. This distance
d, in meters, can be computed from the phasep,

in radians, via a conversion constant known as the
“wavenumber”, normally denotedk, in radians per
meter.k is related to the wavelengthλ, in meters, by
k = 2π/λ.

d =
p

k

When the two images use different transmitters,
the total path length difference is actually twice the
physical motion of the target, because the radiation
has to leave and come back along the new displace-
ment. Hence for a two-bounce system, we usually
sayd = p

2 k , whered now represents the actualtar-
getmotion distance.

You may have noticed thatd, the distance trav-
elled, is a scalar, while the actual target motion is
usually a vector~d. Interferometry can only measure
displacements along the radar line of sight unit vec-
tor ~v;2 so our scalar distanced is actually a projec-
tion of the true target motion~d onto the line of sight
vector~v, or d = ~d • ~v.

Theoretically, given a set of scalar target motions
di each with a different line of sight vector~vi, one
can solve the (usually ill-conditioned but overdeter-
mined) linear systemdi = ~d • ~vi for the unknown
vector target motion~d. In practice, this is compli-
cated when the observations are not all simultanious,
or when the target motion is not entirely uniform.

4.2 Interferometric Baseline

Figure 5 shows a cross-section of two satellites look-
ing at an object. We call the spatial distance between
the two satellites the (spatial) “baseline”, which for a
given location has only two components–the parallel
baselineBp and the normal baselineBn. Both are
just distances in meters. There is no 3D (for exam-
ple, Bz) component of the baseline, because while
forming an interferogram, we always shift the im-
ages along azimuth (out of the page) until they line
up. However, sometimes people do speak of a “tem-
poral baseline” as the time, in seconds or days, be-
tween the two observations.

2Yes, for interferometry there are two different lines of sight;
and the phase difference actually only specifies the size of an
ellipsoid whose foci lie at the two satellites. For actual inter-
ferograms, there isn’t much difference between this family of
ellipsoids and the family of equal-distance planes perpendicular
to the average line of sight.
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Figure 5: In interferometry, there are two or more
satellites looking at the same thing. Because the
two satellites are separated in space, there’s a look-
direction-dependent path length difference between
the two satellites (A). The satellite “baseline” is de-
fined as the distance parallel to and normal to some
reference direction (B). Given the angle between the
look and reference directions, we can compute the
path length difference from the baseline (C).

Given the baseline measured from some reference
direction, we can compute the path length difference
along any other direction using trigonometry. If the
angle between the reference and look directions isl
radians, then the path length differenced in meters
between the satellites is just:

d = P + N = Bp cos(l) + Bn sin(l)

So overall the expected phase difference at a given
look angle (for a 2-antenna system) is exactly:

p = 2kd = 2k(Bp cos(l) + Bn sin(l))

Computing the expected phase from a given look an-
gle is sometimes useful to subtract the phase of a
known ellipsoid or topography. But more often we
want to go the other way–compute the topography or
look angle change for a given phase change as mea-
sured from an interferogram.

4.3 Phase to Topography

Any change to the look directionl, call it δl, clearly
changes the path lengthd to:

d + δd = Bp cos(l + δl) + Bn sin(l + δl)

For topography, is common to assumeδl is small.3

Thus we can take the differential approximation,
which gives:

δd ≈ δl(−Bp sin(l) + Bn cos(l))

We can turn this around and combine withd =
p

2 k to find the angle change that results from a given
phase change:

δl ≈ δp

2k(−Bp sin(l) + Bn cos(l))

Given this topography-driven angle changeδl as
measured from the phase difference, we can compute
the target height above the Earth surface using the
Law of Cosines exactly as in Section 2. The situation
is shown in Figure 6; the Law of Cosines gives us:

(e + t)2 = s2 + h2 − 2sh cos(l + δl)

and thus solving for the topographic heightt we get

t =
√

s2 + h2 − 2sh cos(l + δl)− e

Given a correct look angleδl, this is exact but
highly nonlinear. It is common to linearly approx-
imate4 the topographic height from the phase differ-
enceδp as

t = δp
s sin(i)

2k(−Bp sin(l) + Bn cos(l))
3For example, an 1km height difference from a 900km slant

range is just under 1/15th of a degree.
4I can’t seem to re-derive this approximation, but it does ap-

pear to work.
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Figure 6: Computing topography heightt based on
interferometrically-measured look angle difference
δl.

• p Phase difference; measured by subtracting the
phase of the images to be interfered, radians.

• d Distance target moved between observations,
projected into the satellite average line of sight,
meters.d = p

2 k

• k Wavenumber; phase change per unit distance,
radians per meter.k = 2π/λ, whereλ is the
radar wavelength in air.

• l Look angle; angle from straight down over to
target, as measured from the satellite, radians.

• e Earth radius; distance from center of earth to
local ellipsoid, meters.

• s Slant range; distance from satellite to target,
meters.

• h Height of satellite; distance from satellite
to center of Earth, meters. Can be computed
from the state vector XYZ position ash =√

x2 + y2 + z2.

• t Topography height above a hypothetical
spherical Earth of radiuse, meters.

• i Incidence angle; angle from straight up over
to satellite, as measured from the target point,
radians.

• l Look angle; angle from straight down over to
target, as measured from the satellite, radians.

• Bp Parallel baseline; distance between satellites
measured along the reference direction, meters.

• Bn Normal baseline; distance between satellites
measured across the reference direction, meters.

6



References

[CM91] John C. Curlander and Robert N. Mc-
Donough. Synthetic Aperture Radar Sys-
tems and Signal Processing. John Wiley &
Sons, 1991.

[FL99] Giorgio Franceschetti and Riccardo La-
nari.Synthetic Aperture Radar Processing.
CRC Press, 1999.

[Olm93] Coert Olmsted. Scientific sar
user’s guide. Technical re-
port, Alaska SAR Facility, 1993.
http://www.asf.alaska.edu/reference/
general/SciSARuserGuide.pdf.

A State Vector Coordinates

In an inertial coordinate system, Newton’s laws hold,
and the satellite’s orbit is just an ellipse–so inertial
coordinate systems are used for orbit propagation.
However, because the Earth moves beneath the satel-
lite, the ground track is at an angle to the inertial
flight path, which significantly complicates geoloca-
tions. A typical inertial coordinate system is Geo-
centric Equatorial Inertial (GEI), where the center of
the Earth is the origin, the X axis always points to
the spring equinox, and the Z axis points to the north
pole.

In fixed-earth coordinates, the Earth is stationary
with respect to the coordinate system, which makes
it much easier to work out the swath location–so
fixed-earth coordinates are often used for geoloca-
tions. But because the coordinate system is rotating
beneath the satellite, an orbit is quite strange. The
standard fixed-Earth coordinate system puts the cen-
ter of the Earth at the origin again, the X axis at lati-
tude 0 (the equator) and longitude 0 (the Greenwich
meridian), the Y axis at latitude 0 longitude 90 de-
grees east, and the Z axis at the north pole again.

Converting from GEI to fixed-earth accurately is
actually pretty tricky. First, you need to figure out
the current rotation of the Earth. This is measured
by the angle between the Greenwich meridian (the
fixed-Earth X axis) and the vernal or spring equinox
(the GEI X axis). This is variously called Greenwich
(apparent) Sidereal Time (GST) in the International
Astronomer’s Union (IAU); and somewhat anachro-
nistically the “Greenwich Hour Angle” (GHA) in the
ASF tools and CEOS metadata. Since the Earth ro-
tates once a day, the GHA varies between 0 and 360
degrees over the course of a day;5 so you need ac-
curate timing information to get an accurate GHA.6

The ASF tools routineutc2gha can convert UTC
time to a GHA for the vernal equinox.

So, to convert a GEI state vector to fixed-Earth,
you find the GHA and then rotate the state vector in
the XY plane by that angle, which is easy enough.
But you’re not done. Velocity in fixed-Earth coordi-
nates isn’t just a rotation from the GEI velocity, be-
cause we’ve got to subtract off the velocity of the co-

5A sidereal day, relative to the equinoxes.
6A one-degree GHA error causes a 100km east-west shift at

the equator.
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Figure 7: The same satellite pass plotted in both Inertial and Earth-fixed coordinate systems.

ordinate system itself. This “Coriolis term” is often
neglected with disastrous results, because the Earth
itself rotates at about 1000mph at the equator.

The fixed-Earth Coriolis velocity at a loca-
tion (x, y, z) (in meters), is(−ωy, ωx, 0) (in me-
ters/second). So far, this just says points on the Earth
rotate around the north pole, by moving tangent to
their XY position—standard cylindrical coordinates
stuff. More interesting is the rotation rateω (in ra-
dians/second). Since the Earth revolves one whole
rotation per day,

ω = 2π/daylength

However, sinceω is the rotation rate the the Earth
relative to the stars,7 or the “sidereal rotation rate”, a
day isn’t 24 hours long. This is because the Earth
actually makes one extra revolution per year; be-
cause days are measured relative to the sun, which
we also make one complete orbit around. So over-
all the Earth’s sidereal rotation rate is actuallyω =
(2π/(24 ∗ 60 ∗ 60)) ∗ (1 + 1.0/365.24218967) ra-
dians per second, where the funny constant is the

7GEI is actually in terms of the equinox, not the stars; but if
you ignore the 26,000-year precession of the equinoxes, they’re
the same thing.

length of the “tropical year” (year as measured be-
tween equinoxes).

Overall, you can convert a fixed-Earth state vector
g into an inertial coordinates state vectori by first
rotating both position and velocity by the Greenwich
hour angletheta, and then adding in the coriolis ve-
locity term:

i.x = g.x cos θ − g.y sin θ

i.y = g.x sin θ + g.y cos θ

i.z = g.z

i.vx = g.vx cos θ − g.vy sin θ − i.y ω

i.vy = g.vx sin θ + g.vy cos θ + i.x ω

i.vz = g.vz

Note the Z coordinate is unchanged. To convert
from inertial back to fixed-Earth, just flip the sign on
θ andω.
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B ASF Precision Processor Geolo-
cations

The ASF Precision Processor (PP) produces SAR
images in “Ground Range”. This section attempts
to explain what the PP means by Ground Range, and
how this can be related to classic SAR parameters
like observation time and slant range.

Scientists with high accuracy requirements prefer
to work with time and slant range, since these are the
fundamental axes of a SAR. Luckily Doppler is not a
factor for PP geolocations, since after processing to
the natural Doppler, ASF PP images are ”deskewed”
along azimuth so they geometrically lie at a Doppler
of 0 Hz.

B.1 PP y Coordinates

The y coordinate in a PP ground range image is in-
tended to represent along-the-ground azimuth dis-
tance, but actually is just a scaled version of time.
For example, if the data was processed to a 12.5 me-
ter ground range pixel spacing, the actual distance
along the ground may vary due to topographic and
ellipsoid effects not modeled by the PP.

We can be more precise by taking ASF CEOS
Facility Data Record field 96, AZIMUTHPIXEL,
which we’ll call a (typical value: 12.5 meters per
pixel); and field 77, SWATHVELOCITY, which
we’ll call v (typical value: 6626 meters per second).8

The actual time per azimuth pixel is then justa/v
seconds per pixel (typical value: 1.88 milliseconds
per pixel).

Thus the Y coordinate is linearly related to obser-
vation time. This time, along with the slant range de-
termined in the next section, can be combined with
the observation state vectors in the ASF CEOS Plat-
form Position Record to determine the exact imaging
geometry.

In practice, ASF L1 images always have the earli-
est time at the bottom of the image (toward the end
of the CEOS disk file); and later times at the top of
the image (at the start of the CEOS file). This might
be the reverse of what you expect. In the ASF Tools,

8This is almost equal to the orbital velocity, but scaled down
to the Earth height.

azPixTime is normally negative for ASF CEOS im-
ages, indicating decreasing time with increasing line
count.

B.2 PP x Coordinate

The x coordinate in a PP ground range image ac-
tually represents the arc lengthg in Figure 8. This
arc length is the distance from the point directly un-
der the spacecraft (the nadir point) to the point on
the Earth’s surface being imaged, measured along an
idealized Earth surface, which for the PP is a sphere.

Earth
Surface
(Sphere)

Center of Earth

e  Earth Radius

Height
Satellite

h

SAR

g

a

s  Slant Range

Target Point

Figure 8: A cross section of the idealized PP obser-
vation geometry.

Of course, in reality the Earth is not a sphere. The
overall shape of the Earth is ellipsoidal, and even
sea level follows local gravitational variations of the
geoid, and finally land surfaces have significant to-
pography. Each of these create distortions in the im-
age which the PP is at the moment unable to correct–
although our terrain-corrected products take all three
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factors into account (ellipsoid, geoid, and topogra-
phy).

The PP computes the ground range arc lengthg in
Figure 8 by multiplying the ground anglea, in radi-
ans, by the earth radiuse; or g = ae (the usual angle
times radius arc length computation). The ground
anglea, in turn, can be related to the satellite height
h and satellite-ground slant range distances using
the law of cosines as follows:

s2 = e2 + h2 − 2eh cos a

And thus we can interchange between PP ground
range and slant range as follows:

s =
√

e2 + h2 − 2eh cos(g/e)

g = e cos−1

(
e2 + h2 − s2

2eh

)
= g(e, s) (1)

• s Slant range; distance from satellite to target,
meters.

• e Earth radius used by PP, meters.

• h Satellite height; distance from satellite to
center of Earth, meters. Can be computed
from the state vector XYZ position ash =√

x2 + y2 + z2.

• g PP ground range; arc length along sphere
from nadir to target, meters.g = a e

• a ground angle; angle between nadir and target
as measured from the center of the Earth, radi-
ans.a = g/e.

The slant range determined here can then be used
in accurate SAR geolocation.

B.3 PP Earth Radius

Unfortunately, the Earth radiuse the PP uses to com-
pute ground range is not the true radius of the Earth
at the scene center nor at the nadir; but some other
radius.9 What’s worse, the PP Earth radius is not
stored directly anywhere in the ASF CEOS.

9We are still trying to determine exactly how the PP com-
putese; at the moment it appears to be a geolocation computa-
tion based on an incorrect state vector.

Currently, the best way to reconstruct the
PP’s Earth radiuse is from the CEOS Facility
Data Record. We begin with CEOS field 83,
SL RNG 1ST PIX, which we’ll call sF ; and field
84, SL RNG LAST PIX, sL. Now, the total ground
range distance across the scene should equal CEOS
field 97, RANGEPIXEL, times field 28, AC-
TUAL PIXELS (minus one); call this total ground
range distance across the whole image∆g. So given
a prospective Earth radiuse, we can use equation 1
above to compute the ground range distance across
the image asg(e, sL) − g(e, sF ), which in a per-
fect world would equal the∆g we compute from the
CEOS. It usually isn’t the same, but we can then ad-
just our prospective Earth radiuse using any standard
root-finding algorithm (bisection, secant method, ...)
until our g(e, sL) − g(e, sF ) equals the PP’s∆g,
which will mean oure matches the earth radius com-
puted by the PP.

So overall we just adjuste until

g(e, SL RNG LAST PIX)− g(e, SL RNG 1ST PIX)
= RANGE PIXEL ∗ (ACTUAL PIXELS− 1)

When using the ASF Tools, the PP earth radiuse is
computed in exactly this iterative fashion and stored
in the .meta file as “earthradiuspp”.

10

http://www.asf.alaska.edu/getdata/guidelines/ref_ceos.html
http://www.asf.alaska.edu/reference/general/FacilityDataRecord.pdf
http://www.asf.alaska.edu/reference/general/FacilityDataRecord.pdf


Figure 9: The EGM96 geoid model over the entire
Earth. Black represents a geoid 128m below the el-
lipsoid; white represents a geoid 128m above the el-
lipsoid.

C Geoid

The trickiest part about measuring stuff on the sur-
face of the earth is the weird terminology. Heck, the
field of measuring stuff on the surface of the Earth
is called ”Geodesy”, which is weird terminology al-
ready!

• Ellipsoid: major and minor radius of earth.
Simple mathematical model, easy to convert
to and from 3D coordinates. GPS units usu-
ally gives you ellipsoid-based heights, and
the SAR tools want to process ellipsoid-based
heights. Example ellipsoids: Clarke 1866,
GRS80, WGS84.

• Geoid: model of the theoretical sea level, which
sadly differs from the ellipsoid due to local
gravitational variations (e.g., mountain ranges,
ocean trenches). The geoid can be up to
about 100 meters higher or lower than the el-
lipsoid, although it’s closer to 10 meters higher
in Alaska. Page 3 of this presentation shows
the difference between geoid and ellipsoid for
North America. Among the best current geoid
models is EGM96, which can be downloaded as
a 1/4” degree raster image.

• Datum: coordinate system used for mapping.
Usually much closer to the geoid than to the el-
lipsoid. Not always mathematically defined; for
example, NGVD27 is defined relative to a set
of physical sea level guages. Maps and other

”othometric” measurements are always relative
to some datum. Example datums: NAD27 (hor-
izontal) and NGVD27 (vertical); NAD83 (hori-
zontal) and NAVD88 (vertical).

If you really want millimeter accuracy across the
Earth’s surface, you’ve got to take into account a va-
riety of difficult to model factors: continental drift
(centimeters per year, but continuous), earthquakes
(up to a few meters after a big one), post-glaciation
isostatic ”rebound” (millimeters vertical per year),
seasonal and long-term hydrological inflation and
deflation (centimeters per year), and so on. Luck-
ily, our current remote sensing images only need to
be accurate within about one meter, and so we can
ignore all of these effects.

For most purposes, we can actually approximate
a vertical datum, like NAVD88, with a geoid, like
EGM96. This works because all vertical datums are
approximations of the Earth’s gravitational surface,
and hence only differ by a few meters at most.

The geoid, however, can’t be ignored for accurate
imaging. For example, EGM96’s geoid height near
Alaska is as follows:

Geoid Height Lat,Lon
Meters Degrees

15.40 64,-145
13.42 65,-145
10.22 66,-145
14.97 64,-144

So the geoid height in Alaska is nonzero, non-
neglible, and non-constant over a frame. Luckily,
as you can see the geoid height changes slowly.
Hence to first order, you can convert datum-relative
heights (like you’d download in a DEM) to ellipsoid-
relative heights (like you’d get from a GPS, or use
in the tools) by adding in the ellipsoid-relative geoid
height. As shown in Figure 10, problem we’re fixing
here is that the vertical distance between the topog-
raphy and geoid (the datum-relative height) isn’t the
same as the vertical distance between the topography
and ellipsoid (the ellipsoid-relative height).

C.1 Geoid Tilt

Unfortunately, the mountain ranges that cause geoid
undulations don’t just affect height–they do this by
tilting the local gravitational normal. Think of a
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http://www.geod.nrcan.gc.ca/hm/cig_2005_e.pdf
 http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.html 
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Figure 10: Topography, geoid, ellipsoid, and vertical
vector.
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Figure 11: The geoid’s “vertical” direction (dashed
vertical line, normal to the geoid) isn’t the same as
the ellipsoid’s “vertical” direction (solid vertical line,
normal to the ellipsoid). Luckily, this geoid tilt effect
is small.

plumb bob hanging next to a mountain range–it’ll
tilt toward the center of the range. So to be really
accurate, as in Figure 11, when changing from ellip-
soid to geoid-relative heights there’s also a shift in
the direction meant by “vertical”, which when com-
bined with nonzero topography causes a horizontal
position shift.

The maxmium tilt on Earth is in the Andes, where
there’s about 0.3m horizontal normal tilt per kilome-
ter of elevation (or, equivalently, the ellipsoid and
geoid differ an additional 0.3m vertical distance for
every kilometer of horizontal motion). For the high-
est point on Earth, Mt. Everest, at 8.85km high, the
horizontal shift at the top due to the geoid would be
less than 2.5m.
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