
In-memory Data Compression for Sparse Matrices

Orion Sky Lawlor
Department of Computer Science

U. Alaska Fairbanks
lawlor@alaska.edu

Abstract
We present a high performance in-memory lossless data compres-
sion scheme designed to save both memory storage and bandwidth
for general sparse matrices. Because the storage hierarchy is in-
creasingly becoming the limiting factor in overall delivered ma-
chine performance, this type of data structure compression will
become increasingly important. Compared to conventional com-
pressed sparse row (CSR) using 32-bit column indices, compressed
column indices (CCI) can be over 90% smaller, yet still be decom-
pressed at tens of gigabytes per second. We present time and space
savings for 20 standard sparse matrices, on multicore CPUs and
modern GPUs.

1. INTRODUCTION
The future of high performance computing can be summarized as
“communication dominates energy” [7]. The time and energy cost
of sending a 32-bit value across the memory bus already exceeds
the cost of floating point arithmetic, so increasingly, software can
improve performance by spending arithmetic to minimize the data
sent across the network, loaded from RAM, or stored in cache. For
regular dense arrays, it is often sufficient to reduce the data size, for
example from double to single to half precision floating point.

For irregular computations, such as sparse matrices, graphs, or un-
structured finite element meshes [8], we face the difficult problem
of referencing arbitrary neighbors. 64-bit pointers are large, and not
easy to send via network, disk, or to the GPU. 32-bit array indices
improve on each of these problems, and for sparse matrices, a list of
32-bit column indices per row is the common Compressed Sparse
Row (CSR) format. In this paper, we propose further shrinking
these to a variable bit per column format called Compressed Col-
umn Indices (CCI).

1.1 Sparse Matrix Dense Vector Multiply
A typical desktop-scale scientific problem today might have on the
order of n = 106 unknowns, and involve the solution of a linear
algebra problem like AX = B, where X and B are vectors and A is
a matrix. The vectors are of dimension n and hence occupy a few—
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Proceedings of IA3 2013 SC13, November 17–21, Denver, CO, USA
Copyright is held by the author. Publication rights licensed to ACM.
http://dx.doi.org/10.1145/2535753.2535758

megabytes each, which works fine in practice. The matrix A has
a mathematical size of n × n entries, and a simple parallel CPU
dense matrix-dense vector product might look like this.

// Dense matrix dense vector product.
void dense::product(real *src,real *dst)
{
#pragma omp parallel for

for (int r=0;r<maxrow;++r) {
real sum=0;
for (int c=0;c<maxcol;++c)

sum+=matrix[r][c]*src[c];
dst[r]=sum;

}
}

In practice the above code performs well for a small matrix, but
dense storage quickly becomes problematic since n2 = 1012, so a
dense matrix of this size would occupy several terabytes of mem-
ory, beyond the capacity of most desktops. Further, for many prob-
lems the vast majority of these matrix entries are zero, resulting in
wasted space and time. For the matrices we examined, on average
there are only 20 nonzeros per row, so in theory the matrix could
be stored in about a hundred megabytes of RAM.

One solution to this problem is to abandon the mathematical ab-
straction of a matrix entirely, and compute the same vector prod-
uct directly on the mesh or graph structure underlying the prob-
lem, which results in a “matrix-free method” [2]. These are fre-
quently used for explicit finite element simulations, and can be
made to work even for implicit iterative solvers including precon-
ditioned Krylov-subspace methods [13]. However, because com-
puting matrix-vector products this way involves problem-specific
code written by a computational scientist working in a particular
domain, it is labor-intensive to achieve high performance, espe-
cially on modern parallel computers.

A more performance-portable solution is to implement a sparse ma-
trix, both as a common representation spanning problems and im-
plementations, and as a clear dividing line between computational
science and computer science. A sparse matrix explicitly lists the
nonzero entries of the matrix, and never stores or computes the
many zero entries, which allows a single implementation to achieve
high performance on a wide variety of problems. There are several
possible sparse matrix storage formats [1], but the most common is
Compressed Sparse Row (CSR), so called because the zero values
in each row are skipped over and effectively compressed out of each
row. Removing zero values is a fantastic data compression method,
and for a typical sparse matrix with 20 nonzeros per million entries,
it saves about 99.996% of the space consumed by dense storage.



1.2 Compressed Sparse Row (CSR)
In the existing sparse matrix format CSR, the matrix’s nonzero val-
ues are packed into a single long 1D list named “val”, the corre-
sponding column number for each nonzero is stored in a second
1D list named “col”, and each row’s starting index into the previ-
ous two arrays is in a third list named “start”. This code computes
a sparse matrix dense vector product.

void csr::product(const real *src,real *dst)
{
#pragma omp parallel for schedule(dynamic,50)

for (int r=0;r<maxrow;++r) {
real sum=0;
for (int i=start[r];i<start[r+1];++i)
sum+=val[i]*src[col[i]];

dst[r]=sum;
}

}

For example, we will encode this 3× 3 matrix in CSR form. 9 5 0
0 8 0
6 0 7


In zero-based CSR format the three arrays will contain these values.

val=
[
9 5 8 6 7

]
matrix nonzero values (real)

col=
[
0 1 1 0 2

]
corresponding column index (int)

start=
[
0 2 3 5

]
each row’s first index in arrays above

The last array has n+1 entries for an n-row matrix, and so is fairly
small. The val and col arrays each have one element per nonzero
in the matrix, and form most of the storage used by a typical sparse
matrix.

Many have worked on compressing this column index array data.
Willcock and Lumsdaine [14] provide a good summary as of 2006,
though they did not address multicore or GPU, and could not get
high performance without using assembly or other nonportable code.
One aim of our work is to update this result for the multicore and
GPU era.

Our particular data compression scheme will be described in the
next chapter, but in general we use a variable bit-length differential
code to compress the column numbers for each row into a packed
“codes” array, and allow parallel access to any row by storing its
first codes index in the “cstart” array. The remainder of the imple-
mentation follows the CSR pattern closely.

// CCI-format sparse matrix dense vector.
void cci::product(const real *src,real *dst)
{
#pragma omp parallel for schedule(dynamic,50)

for (int r=0;r<maxrow;++r) {
decoder_t cols(table,&code[cstart[r]]);
real sum=0;
for (int i=start[r];i<start[r+1];++i)
sum+=val[i]*src[cols.next()];

dst[r]=sum;
}

}

The full code for the GPU decompressor is shown in the Appendix.

Space 1-CPU Rate for
Library Saved Decoding Coding

CCI 92% 2.72 GB/s 0.42 GB/s
LZ4C 92% 0.72 GB/s 0.84 GB/s

zlib 96% 0.65 GB/s 0.08 GB/s
Gzip 95% 0.25 GB/s 0.16 GB/s

bzip2 96% 0.09 GB/s 0.01 GB/s

Table 1: Single-core data compression performance of our
method of compressed column indices (CCI), and several ex-
isting libraries. Dataset is 32-bit matrix column deltas.

2. IN-MEMORY DATA COMPRESSION
Uncompressed CPU RAM can be accessed sequentially at tens of
gigabytes per second, so any data compression algorithm used to
replace a direct memory access must have a high rate. Because first
decompressing all the data and then computing with it would send
the uncompressed data on a round-trip to RAM, we must decom-
press and immediately use the data in place. Because CPU func-
tion call overhead (currently a few nanoseconds) would dominate
this rate, we cannot even call a function for each decompressed
data item if the items are on the scale of machine integers. One
workaround could be to decompress one small cache-sized block of
data at a time, which would work well with programmable scratch-
pad memory. On current hardware, it works best to combine the
compression and data consumption functions, for example using
runtime code generation, function inlining, or C++ templates.

As shown in Table 1, existing software data compression imple-
mentations are mostly well under a gigabyte per second per core.
High performance software data compression libraries that forego
bit-level operations can do better than this, such as the very recent
LZ4 [3], which can exceed a gigabyte per second decompression
rate with some datasets, although the rates suffer when data sizes
are much less than a megabyte. A dedicated silicon implemen-
tation of the GZIP algorithm [12] showed an eightfold electrical
energy reduction compared to CPU software, but still runs at only
0.31GB/s per chip.

For compressing matrix column indices, storing only the difference
between adjacent columns or “delta coding” dramatically reduces
the data size. In our experiments, the mean and median number of
bits required for a raw column index were both 15 bits; delta coding
reduced the mean to 5 bits and the median to 1 bit–over 50% of
the columns are adjacent to the previous column. The table above
shows compressed column index differences; compression savings
are a few percent lower using non-delta coded columns, but speeds
are similar.

2.1 Table-Driven Decompression
We compress matrix column indices using a typical variable bit
length tree type coding scheme [6]. A naive implementation of
this is particularly ill-suited to modern deeply pipelined CPUs due
to the many data-dependent branch operations, which are inher-
ently unpredictable, resulting in a high branch misprediction rate
on CPUs. Modern GPUs do not perform branch prediction, yet
GPU performance is still poor for typical compression trees, due to
branch divergence and load/store divergence as threads in a single
warp take data-dependent branches.

It is possible to structure a variable sized Huffman-type decom-



pressor so no data-dependent branch instructions are used during
decompression, thus eliminating branch mispredict on CPUs and
branch divergence on GPUs. This can be achieved using a data-
dependent decode table [5], indexed by the next portion of com-
pressed data, containing the decompressed value and distance to
move ahead in the compressed dataset. Of course, for codewords
of up to N bits, this requires a table with 2N entries, which for
reasonable column index maximum jumps between 16 and 32 bits,
rapidly exceeds any plausible cache size. The table must be small
enough to fit in cache because table accesses have low locality, so
uncached table accesses would rapidly outweigh any time savings
from data compression.

To reduce the size of the decode table, we borrow a technique from
CPU instruction set encoding design, and separate codewords into
opcode and immediate data portions. This allows our decode table
to be sized to fit only the possible opcodes, typically 2–4 bits, and
we can separately extract the immediate data from the code stream.

Variable-length opcodes can be supported using the simple tech-
nique of filling the table at a short opcode plus every possible data
bit occupying the rest of the decode table index, a technique that
appears to be well known among practitioners [10] but rarely dis-
cussed in literature. For example, suppose we use opcodes of up to
two bits, so the decode table has four entries, but we only want the
three opcodes 0, 10, and 11. The two-bit opcodes 10 and 11 are
simply written into the table at their index. Because the 0 opcode
is only one bit long and so will be followed by a data bit when in-
dexing the table, we fill in the decode table with two versions 01
and 00, one for each possible value of the data bit.1

04-bit run

0015-bit jump

01115-bit jump

10120-bit jump

11129-bit jump

subsequent compressed data

Figure 1: A compressed data item consists of an opcode, and
the length of a contiguous run or distance to jump. Data is
ordered from low to high bits, here right to left.

Figure 1 shows our column compression encoding, which uses at
most 3 opcode bits. On the CPU, a leading opcode of 0 indicates a
contiguous run of columns, with the run length encoded in the next
four bits–experimentally, half all columns are adjacent to the pre-
vious column. On the GPU, due to thread stride within a row, con-
tiguous runs are spread across threads, so the same leading opcode
indicates a short jump of the magnitude of the thread stride. An
opcode of 001 indicates a jump of up to 5 data bits, 011 indicates
a 15-bit jump, 101 indicates a 20-bit jump, and 111 indicates a
29-bit jump, allowing a matrix of up to half a billion columns. Au-
tomated tuning for time and space indicates there is some variation
in the optimum encoded bit allocation depending on the matrix,
but using the same compression scheme for every matrix simplifies
the software, costs negligible time, and costs only a few percent of
space. All three-bit opcodes index into a decode table of 8 entries,
where each entry is 8 bytes, resulting in a constant decode table that
occupies 64 bytes, small enough to fit in a single read-only cache
line.

1This is similar to expanding “don’t care” entries into a full boolean
truth table.

Another difficulty is most memory systems allow no access shorter
than a byte, while our codes are arbitrary numbers of bits. One so-
lution is to emulate bit pointers by loading a whole byte and shift-
ing bits,2 although this may only load a single valid bit for some
indices. On x86 CPUs, we can efficiently load 64-bit values from
unaligned addresses, so in a single load3 we can extract at least 57
bits from an arbitrary bit location. GPUs do not support unaligned
data access,4 but they have enough threads to support a load loop
efficiently, so this is less of a performance problem there. We look
forward to when CPU instruction sets support a hardware SIMD
gather operation, as has been promised for AVX2, since this would
allow us to vectorize the simultaneous decompression of multiple
rows.

3. THEORETICAL ANALYSIS
Consider an n×n sparse matrix, in which each row has an average
of z nonzero entries. In an information theoretic [11] sense, CSR
format uses at least lbn bits5 to store the index of each column
independently.

Because a column index can take any of n values, a single uni-
formly distributed column index indeed has Shannon entropy of
lgn bits, so the above figure might appear optimal. However, in
a sparse matrix each row has a list of unique columns, which can
always be reordered into increasing order. The average distance
between each neighboring pair of z such columns when distributed
uniformly across n possible values is n/(1 + z), so the maximum
average Shannon entropy of each column index jump is lb(n/(1 +
z)) = lb(n)− lb(1 + z) bits. This is clearly smaller than the CSR
format’s lbn bits per index.

In any compression scheme, the uncompressed size minus the com-
pressed size gives us the amount of space saved, and is often ex-
pressed as a percentage of the uncompressed size. Thus a scheme
that saves 90% of space uses one tenth the original storage. Us-
ing the above analysis, the worst case space savings rate is a frac-
tion of lb(1 + z)/ lb(n). If the number of nonzeros per row z
is a constant, the storage savings rate slowly approaches zero as
n grows, which asymptotically puts the CSR format within an ar-
bitrarily small factor of optimal. But if z grows with n by some
constant factor f , such as z = n/f , the storage savings is approx-
imately 1 − lb(f)/ lb(n), which approaches unity as n grows, so
the CSR format wastes an increasing fraction of storage.

4. EXPERIMENTAL ANALYSIS
We tested our data compression scheme on 20 matrices from the
University of Florida Sparse Matrix Collection [4], which range
from hundreds to millions of rows. They are listed in Table 2 sorted
by the CSR storage space used, and show the percentage of this
storage space saved by our column compressed index (CCI) stor-
age scheme, and performance data for sparse matrix-dense vector
products. Generally, the GPU methods are faster for matrices over a
megabyte in size; for smaller matrices, the GPU suffers from kernel
startup overhead, while a multicore CPU benefits from its cache.

The CPU used is an eight-thread four-core Intel Core i7-3770K at
3.50GHz, with 32GB RAM, using g++ 4.6.3 with -fopenmp, -O3,

2op=ptr[index/8]>>(index%8);
3op=(*(uint64_t *)(&ptr[index/8]))>>(index%8);
4Current CUDA hardware silently rounds unaligned accesses down
to the nearest aligned address.
5We use the ISO notation for binary logarithm, lbN ≡ log2 N



Matrix Space CPU GPU
Rows Nonzeros CSR CCI Total GF/s Time GF/s Time

Name ×106 z per row MB Saved Saved CSR CCI Saved CSR CCI Saved
af_shell10 1.508 18.0 206.7 91% 30% 7.8 9.6 23% 15.1 18.8 25%

ldoor 0.952 24.9 181.1 92% 31% 7.0 9.1 30% 18.5 20.5 11%
msdoor 0.416 24.8 78.8 91% 30% 6.8 8.7 29% 16.5 19.5 18%

pwtk 0.218 27.2 45.2 94% 31% 8.1 10.6 31% 17.9 22.5 26%
hamrle3 1.447 3.8 42.1 65% 22% 4.2 3.8 -11% 9.7 6.0 -38%

hood 0.221 24.9 41.9 92% 31% 7.5 8.7 16% 14.9 19.0 28%
shipsec1 0.141 28.2 30.3 92% 31% 8.1 8.9 10% 17.1 21.4 25%

webbase-1M 1.000 3.1 23.7 55% 18% 3.0 2.8 -5% 6.8 4.6 -33%
consph 0.083 36.6 23.2 92% 31% 8.3 9.6 15% 18.3 20.4 11%

poisson3Db 0.086 27.7 18.1 72% 24% 4.9 4.2 -14% 15.9 7.9 -51%
pkustk10 0.081 27.2 16.7 92% 31% 8.1 8.9 9% 15.2 19.4 28%

pdb1HYS 0.036 60.2 16.7 96% 32% 8.5 9.1 7% 25.1 23.9 -5%
mc2depi 0.526 4.0 16.0 57% 19% 5.6 3.6 -36% 9.0 6.1 -33%

cant 0.062 32.6 15.5 93% 31% 8.5 8.8 3% 17.6 22.6 28%
scircuit 0.171 5.6 7.3 69% 23% 5.0 3.4 -31% 7.7 6.9 -10%

poisson3Da 0.014 26.1 2.7 74% 25% 6.2 4.5 -28% 13.2 9.3 -29%
thermal1 0.083 4.0 2.5 63% 21% 4.3 2.9 -33% 6.3 5.2 -17%
lock1074 0.001 24.5 0.2 94% 31% 9.3 6.9 -25% 4.0 5.8 45%
bcsstm38 0.008 1.0 0.1 5% 2% 1.5 1.6 6% 0.7 0.8 16%

poisson2D 0.000 6.6 0.0 69% 23% 2.3 2.3 0% 0.4 0.8 73%

Table 2: For each matrix, the matrix’s total uncompressed size, the compression rate for column data alone, overall compression
rate, and SMDV performance in billions of floating point operations per second (GF/s). We compare Compressed Sparse Row (CSR)
with our Compressed Column Index (CCI) for both CPU and GPU. The highest performing method for each platform is in bold.

-msse3, and -ffast-math on Ubuntu Linux 12.04. Using the Intel
compiler gave a slightly slower result than g++. Our CPU version
is compared with CSR from the Intel Math Kernel Library 11.0
update 5, which is tuned for SIMD and multicore. The GPU is an
NVIDIA GeForce GTX 570, using CUDA; our GPU CSR runtime
comparison is with CUSPARSE 4.2.

4.1 Storage Space Analysis
Some applications are dominated by data transfer time, so nearly
any transformation that saves space without dramatically inflating
the computation time is beneficial [9]. Other applications are lim-
ited by RAM capacity, especially with the limited RAM available
on the GPU, so again a space-time tradeoff would allow larger
problems to be explored regardless of runtime cost.

As shown in Table 2, the achieved column index data savings rates
with our CCI algorithm vary from above 90% for large highly reg-
ular matrices, to about 60% for large stochastic matrices, to under
10% for very small matrices with few nonzeros per column. These
rates are a few percent less than those achievable with the dedicated
compression libraries shown in Table 1, although those libraries’
decompression rates are several times lower.

Based on the theoretical analysis in the previous section, if the col-
umn indices were uniformly randomly distributed—the worst case
for data compression—we would expect a savings rate of lb(1 +
z)/ lb(n). The average number of nonzeros per row is z = 20, so
for an n = 1000 row matrix, this is 44%; while for n = 1000000
rows, this is 22%. In practice, our savings rates are much higher
than this worst case, typically above 90% for z > 20 nonzeros per
row, which indicates column indices have locality that allows them
to compress well.

4.2 Performance Analysis: CPU
On a modern CPU, a naive table-driven implementation of CCI
costs about 1 nanosecond per matrix nonzero, resulting in a deliv-
ered single precision sparse-matrix-vector performance of about 2
GFLOP per core. This is a poor result compared to a tuned CSR im-
plementation such as the Intel Math Kernel Library’s mkl_scsrmv,
which delivers about 4 GFLOP per core. Yet CSR only scales to
under 8 GFLOP on eight threads (2-fold scaling) due to the high
memory bandwidth required.

The main limiting factor for using CCI on CPUs appears to be the
single data dependency chain carried by the fetch-decode-shift por-
tion of the decompressor’s state variables. We can hide some of
the latency along this chain by software interleaving several inde-
pendent decompression streams. For example, we experimented
with simultaneously decompressing several rows in a single loop,
or dividing the columns of a single row into several independent
streams separated by stride, in either case using several accumula-
tors to break the dependency chain on sum. As shown in Figure 2,
either technique improves performance somewhat, although naive
CCI is actually higher performance for the highest thread counts.
For comparison, we show the pointer-chasing List-of-Lists (LIL)
data format, as an example of a format dominated by memory fetch
latency.

Overall, CSR dominates for arrays small enough to fit in cache, but
for large arrays where memory bandwidth becomes important, if
CCI compression rates are good it outperforms CSR.

4.3 Performance Analysis: GPU
The GPU might seem like a less promising architecture for memory
compression, due to its higher naive memory bandwidth, but the



1 2 3 4 5 6 7 8
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0 CSR
CCI rows-2
CCI naïve
LIL

OpenMP CPU Thread Count

M
ed

ia
n

G
F

L
O

P
S

Figure 2: Multicore CPU scalability by data layout.

GPU’s high thread count6 allows it to tolerate latency much better
than current CPUs. Currently, we do not attempt to parallelize the
compression of sparse matrix column indices on the GPU, since the
variable-length per row compacted output would require a two pass
algorithm and parallel prefix traversal, and a GPU-side compres-
sion algorithm would require uncompressed data to be sent across
the PCIe bus.

A direct, one thread per matrix row, CUDA version of our com-
pressed column index decompression and sparse matrix dense vec-
tor multiply code runs at about 4 GFLOPS. A similarly naive ver-
sion of CSR runs at just over 2 GFLOPS. Yet a well tuned com-
mercial library implementation, like CUSPARSE’s Scsrmv, can
perform at over 20GFLOPS for the same matrices on the same
hardware. The key for good performance on GPUs, as explained
by Bell and Garland [1], is to use several threads per row, inter-
leaving accesses to slice the row across GPU threads. This helps
because interleaved matrix value and vector write accesses within
a row are perfectly regular and aligned, while accesses between
rows are necessarily ragged. Because the GPU executes adjacent
threads simultaneously, better performance is achieved when ad-
jacent threads are accessing nearby data at the same time; that is,
GPUs do not reward per-thread locality, but across-thread locality.7

Using eight interleaved threads per row and compressed column
indices, for matrices that compress well we can decompress sparse
matrix column indices on the GPU at an aggregate rate of over
40GB/sec, and consistently deliver over 20GFLOP. For these matri-
ces, compressed column index traversal performs up to 30% better
than CUSPARSE 4.2.

Comparing CPU and GPU performance, we find the CPU dom-
inates for small matrices due to the GPU’s several microsecond
kernel startup overhead. We have included the time to copy the re-
sult vector from the GPU to CPU, but ignored the time to copy the
matrix itself from CPU to GPU, under the assumption that most sci-
entific matrices are reused many times—for example, in the steps
of an iterative Krylov solver, or an explicit timestepping approach.
Including GPU matrix memory copy time skews the results further
in favor of CCI due to its lower data volume.

6Typically thousands of active threads, from a pool of millions.
7A simple example: in a row-major 2D image, performance is
much better if each GPU thread walks down a column, not across
a row!

As shown in Figure 4, on both CPU and GPU, the mechanism by
which CCI speeds up a matrix-vector multiply is by reducing the
total memory bandwidth used. Although column indices are highly
compressed, the vector and matrix values are uncompressed, result-
ing in a 33% maximum possible speedup. For favorable matrices,
we are very close to this theoretical upper bound; for other matri-
ces, the overhead of decompression outweighs the speedup from
slightly lower memory bandwidth use.

15% 17% 19% 21% 23% 25% 27% 29% 31% 33%
0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

Space Saved

N
on

ze
ro

s 
P

er
 R

ow
Figure 3: CCI’s space savings improve dramatically if the num-
ber of nonzeros per row is high.

15% 17% 19% 21% 23% 25% 27% 29% 31% 33%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

CPU GPU Space Saved

T
im

e 
S

av
ed

Maximum Theoretical Speedup

Figure 4: Comparing CCI’s space savings versus its time sav-
ings. Negative savings indicate CCI is slower than CSR.

5. CONCLUSIONS AND FUTURE WORK
This work shows it is possible to save time by saving space. In-
memory data compression on modern hardware is feasible, and can
deliver just-in-time decompressed data at over 16 GB/s on mul-
ticore, and over 46 GB/s on the GPU. Although it is not always
faster than CSR format, it is competitive with tuned commercial
implementations.

Currently, we only compress column index data, but each matrix
operation must also read the matrix and source vector values, and
write the destination vector value, so if all four values have equal
size the maximum theoretically achievable memory bandwidth im-
provement by compressing column indices is only 25%. Some ma-
trix nonzero values are nearly incompressible, while others may
be perfectly compressible (such as uniform), so compressing these
would allow a speedup of up to 50%. A tile-based approach that
caches source and destination vector values closer to the compute



elements could further reduce the overall memory bandwidth us-
age, although in all cases this depends on the compressiblity of the
data.

Note that typically the + and ∗ operations used in our matrix-vector
product are floating-point hardware operations, but in general could
form a semiring or an even simpler algebraic structure. Since we
always do the multiplication before any additions, we do not even
require distributivity over addition. This could be useful in graph
algorithms, where “multiplying” a set of node values by the sparse
adjacency matrix could perform a neighborwise operation such as
minimum-cost-among-neighbors, which could be iterated to com-
pute a minimum cost spanning tree in parallel.

Sparse matrices are applicable to a variety of problems, but they
are also a common language in which a variety of applications can
be expressed, and then transformed for high performance. We feel
these runtime data storage transformations are a promising means
to achieve high performance, but the real challenge is to find an
interface that will allow applications to use them without extraor-
dinary programmer effort.

6. REFERENCES
[1] N. Bell and M. Garland. Efficient sparse matrix-vector multiplication

on CUDA. NVIDIA Technical Report NVR-2008-004, 2008.
[2] P. N. Brown and A. C. Hindmarsh. Matrix-free methods for stiff

systems of ODEs. SIAM J. Numer. Anal., 23(3):610–638, 1986.
[3] Y. Collet. LZ4: Extremely fast compression algorithm. In

code.google.com, 2013.
[4] T. A. Davis and Y. Hu. The university of Florida sparse matrix

collection. ACM Transactions on Mathematical Software, 38:1–25,
2011.

[5] O. Edfors, P. O. Börjesson, A. Erendi, P. Ola, and B. S. A. Erendi.
Analysis of a fast algorithm for look-up table based variable-length
decoding. In Proc. Radioveten. Konf, pages 181–184, 1993.

[6] D. A. Huffman. A method for the construction of minimum
redundancy codes. Proceedings of the I.R.E., 40:1098–1101, 1951.

[7] S. W. Keckler, W. J. Dally, B. K. Khailany, M. Garland, and
D. Glasco. GPUs and the future of parallel computing. IEEE Micro,
31(5):7–17, 2011.

[8] O. S. Lawlor, S. Chakravorty, T. L. Wilmarth, N. Choudhury,
I. Dooley, G. Zheng, and L. V. Kale. ParFUM: A parallel framework
for unstructured meshes for scalable dynamic physics applications.
Engineering With Computers, 22(3):215–235, 2006.

[9] N. Reddy, R. Prakash, and R. M. Reddy. New sparse matrix storage
format to improve the performance of total SPMV time. Scalable
Computing: Practice and Experience, 13(2):159–171, 2012.

[10] M. Schindler. Practical Huffman coding.
http://www.compressconsult.com/huffman/, August 1998.

[11] C. Shannon. A mathematical theory of communication. Bell System
Technical Journal, pages 379–423, July 1948.

[12] T. Summers. Hardware based GZIP compression, benefits and
applications. In AHA Products Group Whitepaper, 2008.

[13] R. Telichevesky, K. S. Kundert, and J. K. White. Efficient
steady-state analysis based on matrix-free krylov-subspace methods.
In Proceedings of the 32nd annual ACM/IEEE Design Automation
Conference, pages 480–484. ACM, 1995.

[14] J. Willcock and A. Lumsdaine. Accelerating sparse matrix
computations via data compression. In Proceedings of the 20th
annual international conference on Supercomputing, ICS ’06, pages
307–316, New York, NY, USA, 2006. ACM.

Appendix: CCI Decode for GPU
// CCI-format product for GPU, in CUDA
enum {SLICES=8}; // threads per row
__global__ void CCI_product_device(

const float *src,float *dst, // vectors
int max_row, // size of matrix
const int *start, // row index into vals
const float *val, // matrix nonzeros
const int *cstart, // code index per slice
const code_t *code // compressed columns
)

{
uint idx=threadIdx.x;
uint thread=idx+blockIdx.x*blockDim.x;
uint row=thread/SLICES;
uint slice=thread%SLICES;
if (row>=max_row) return; // extra threads

int col=-1; // last column number decoded
// Location in compressed data array
uint cindex=cstart[row*SLICES+slice];

// Compressed data buffer (64 bits)
unsigned long long m=0; // compressed data
uint mbits=0; // count valid low bits of m

// Loop over our slice of our row
float sum=0.0;
const int beg=start[row], end=start[row+1];
for (int i=beg+slice;i<end;i+=SLICES)
{

// Refill compressed data buffer
while (mbits<3*code_bits) {

m=m|(code[cindex++]<<mbits);
mbits+=code_bits;

}

// Low bits contain opcode
const decode_table_t &t=

decode_table[m&opcode_mask];

// Higher bits contain data--
// the difference in column numbers
col+=t.mask & (m>>t.shift);

// Remove consumed bits from buffer
m=m>>t.count;
mbits-=t.count;

// Process this column number
sum+=val[i]*src[col];

}

// Parallel-reduce row sum across slices.
// Each reduction is SLICES wide, but
// we may have more threads/block. See [1]
__shared__ float sums[threads_per_block];
sums[idx]=sum;
if (slice< 4) sums[idx]+=sums[idx+4];
if (slice< 2) sums[idx]+=sums[idx+2];
// slice 0: write result to global memory
if (slice==0) dst[r]=sums[idx]+sums[idx+1];

}


