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Abstract—We present and analyze two new communication
libraries, cudaMPI and glMPI, that provide an MPI-like message
passing interface to communicate data stored on the graphics
cards of a distributed-memory parallel computer. These libraries
can help applications that perform general purpose computations
on these networked GPU clusters. We explore how to efficiently
support both point-to-point and collective communication for
either contiguous or noncontiguous data on modern graphics
cards. Our software design is informed by a detailed analysis of
the actual performance of modern graphics hardware, for which
we develop and test a simple but useful performance model.

I. INTRODUCTION AND PRIOR WORK

In 1968 Myer and Sutherland [1] asked a surprisingly

prescient question: “How much computing power should be

included in the display processor?”. Today, just as the decades-

long exponential climb of serial processor performance ends,

the parallelism available in modern GPUs can provide us with

an enormous amount of computing power.

The modern Graphics Processing Unit (GPU) is a fully

programmable parallel computer, with hardware capable of

efficiently switching between thousands of threads. As such,

interest is growing in the use of GPUs for non-graphics

or “general purpose” problems (GPGPU). Excellent GPGPU

results are becoming commonplace in fields from molecular

dynamics to physics simulation [2]. For many real problems,

GPUs have shown performance exceeding both the latest

multicore processors and the Cell, not only in delivering more

operations per second, but also more operations per second

per dollar, and more operations per watt of power [3].

This performance potential, currently about one teraflop

of single-precision floating point performance per GPU, is

leading to increasing interest in using GPUs in networked

supercomputers and clusters. This paper describes our new

software libraries called cudaMPI1 and glMPI for passing

messages among a distributed-memory cluster of GPUs.

A. CPU Parallel Programming Interfaces

The Message Passing Interface, MPI, is an international

standard programming interface for distributed-memory par-

allel CPU programming that actually achieved extremely

widespread use. MPI is used by parallel applications on

hardware ranging from multicore laptops through petaflop-

and-megawatt supercomputers. Correspondingly, many imple-

mentations of MPI exist, from vendor-tuned high-performance

1cudaMPI is not from NVIDIA, owner of the CUDA trademark.

implementations, to specialized research implementations, to

open-source component-based implementations such as Open-

MPI [4]. Back in 2003, we helped create an automated load-

balancing implementation of MPI called Adaptive MPI or

AMPI [5].

Our library cudaMPI uses CUDA to provide an MPI-like

interface for GPU-to-GPU communication, as in Figure 1.

Similarly, glMPI brings MPI-like networking to OpenGL.

B. Single GPU Programming Interfaces

There are two main classes of programming interface for

the GPU: graphics interfaces, and general-purpose interfaces.

Graphics interfaces such as OpenGL or Microsoft’s DirectX

are substantially older and more mature, and are now both

portable and sophisticated interfaces supporting C++-like GPU

programming, although designed around graphics concepts

such as textures and pixels. The big limitation of graphics

interfaces is that the only memory a pixel shader can change

is its own pixel.

Newer general-purpose interfaces include NVIDIA’s Com-

pute Unified Device Interface (CUDA) and the new multi-

vendor standard OpenCL. Several commercial languages also

exist, including RapidMind and PeakStream. These interfaces

provide a more natural programming environment, in par-

ticular allowing integer variables, pointer manipulation, and

arbitrary memory reads and writes on the GPU cores. In this

paper, we focus primarily on CUDA, which is emerging as

the dominant interface for scientific GPGPU programming.

However, it is extremely important that we design software

interfaces that can survive hardware changes, since high-

performance hardware ceases to be high-performance in only

a few years, yet parallel software often lives on for decades.

OpenGL, despite its flaws, is approximately as old and well es-

tablished as MPI, with dozens of stable implementations from

major vendors, and hundreds of thousands of programs and

Fig. 1. Applications use cudaMPI to send GPU data across an MPI network.



programmers. For accessing programmable graphics hardware,

OpenGL is currently the only choice that works with hardware

from different vendors on all major operating systems, so in

this paper we discuss OpenGL as well as CUDA.

C. Parallel GPU Programming

Programming parallel GPU machines is difficult, at least in

part because both parallel and GPU programming are each

difficult. However, a small class of GPU applications are

easy to parallelize, because minimal or no communication

is required during the application run. For example, we de-

veloped MPIglut [6], a parallelizing implementation of the

sequential OpenGL windowing library glut which uses MPI

internally to allow a serial GPU application to run across

every node of a multi-screen multi-GPU powerwall. MPIglut

manipulates the OpenGL viewport so each node’s copy of

the sequential application correctly renders its portion of the

shared display, and MPIglut broadcasts user events across the

parallel machine. Of course, more complicated applications

require their own additional GPU-to-GPU communication.

On parallel CPUs, shared-memory parallel programs are

widely considered easier to develop than message passing.2

Many researchers have sought to extend this shared-memory

paradigm to GPUs. First, for a graphics interface, driver ren-

dering tricks such as SLI or CrossFire can hide the existence

of multiple GPUs, but this only works efficiently up to a

few GPUs. A conceptual shared-memory model like Global

Arrays, recently implemented for GPUs in ZippyGPU [7],

provides a clean interface, but achieving high performance can

be challenging. Finally, software distributed shared memory

can be implemented by modifying each memory access to use

a GPU page table, but a 2006 implementation by Moerschell

and Owens [8] showed a 100-fold slowdown. However, despite

extensive research effort on CPUs, currently distributed mem-

ory with explicit message passing is the only communication

technology known to scale well beyond a few thousand nodes,

so we expect message-passing will become the dominant GPU

communication method, at least at large scale.

Eventually, a GPU-only communication model may become

affordable, where 100% of the application’s code runs on

the GPU, and the CPU withers to a mere I/O processor.

Stuart and Owens implemented DCGN [9] this way, but

even dedicating CPUs to polling for GPU communication,

this still requires hundreds of microseconds per message.

Fundamentally, the networks’ per-message cost dominates the

time to send many tiny messages, such as the per-GPU-kernel-

execution messages in DCGN. It is much faster to send the

same bytes in fewer messages; yet combining messages from

different GPU kernels is tricky without involving the CPU.

For this reason, cudaMPI’s programming model is CPU-

centric, with CPU code initiating each communication opera-

tion, and the GPU only providing the communicated data. This

allows communication operations to be performed en masse

2Although synchronization bugs under shared memory can be quite subtle!

Operation α = setup time β = 1/bandwidth

GPU Kernel Execution tK 4000 ns/kernel 0.01 ns/byte

GPU-CPU Memcpy tM 10000 ns/copy 0.4 ns/byte

Network (Infiniband) tN 1000 ns/message 1 ns/byte

Network (Gigabit) tN 50000 ns/message 10 ns/byte

Fig. 2. Typical constants for t = α + β n performance model.

on large blocks of data, to make more efficient use of both

the CPU and network.

Initiating communication on the CPU is acceptable because

real parallel applications are complex, having hundreds of

thousands of lines of existing CPU code that are not likely

to soon be ported to the GPU, for both technical and practical

reasons. For the foreseeable future, applications will use a

CPU-GPU hybrid approach, handling setup or rare cases with

their large legacy CPU codebase, and using the GPU for the

smaller performance-critical portion of their operations. Thus

real application development will require clean, portable, high-

productivity interfaces to exchange data and control between

the CPU, GPU, and network.

II. GPU HARDWARE AND PERFORMANCE MODEL

This hardware is involved in parallel GPU computing:

• GPU shader cores, which run GPU kernels, are both

parallel and deeply multithreaded to provide significant

computational power, currently on the order of a teraflop

per GPU.

• Graphics memory, which is directly accessible by GPU

kernels, has a high clockrate and wide bus width to

provide substantial bandwidth, currently about a hundred

gigabytes per second.

• GPU interconnect, providing mainboard access to the

GPU. This is typically PCI Express, and so delivers a

few gigabytes per second of bandwidth.

• Mainboard RAM, which is directly accessible by CPU

programs and the network.

• CPU cores, which are deeply pipelined and superscalar

to provide good performance on sequential programs.

• Network hardware, which moves bytes between nodes.

We use the trivial latency plus bandwidth performance

model to describe the time taken to operate on n bytes:

t = α + β n

t : total time, in seconds, for the operation.

α : software overhead and hardware setup time, typically tens

of thousands of nanoseconds. For networks, this is one

aspect of latency.

β : time per byte, typically less than a nanosecond. For

networks, this is the inverse of bandwidth.

n : number of bytes being computed or moved.

Since this model applies to many different parts of our

parallel GPU hardware, we add subscripts to indicate what

operation is being used. For example, the time to run a GPU

kernel to compute n bytes is quite nearly tK = αK + βK n.

In section III we use this performance model to describe the
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Fig. 4. CPU overhead for network operations on gigabit Ethernet.
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Fig. 5. End-to-end time for network operations on gigabit Ethernet.

time to do a CPU-GPU memory copy tM = αM + βM n or

network communication tN = αN + βN n. Figure 2 shows

typical values for these constants.

The surprising fact on modern hardware is that α >> β:

the per-message cost is much larger than the per-byte cost,

so small messages are expensive. Patterson[10] points out that

the α term is both large and increasing, yet widely ignored

both in marketing (e.g., gigabit ethernet, 3Gb/s SATA) and

by many designers. We have found many real parallel GPU

applications that operate on small n problems are completely

dominated by αK or αM startup costs.

III. MESSAGE PASSING ON THE GPU WITH CUDA

Unfortunately, there is no direct connection between our

network device and GPU memory. Thus to send GPU data

across the network, we must copy the send-side GPU data to

CPU memory, send across the network using a standard CPU

interface such as MPI, and finally copy the received data from

CPU memory into GPU memory.

The simplest possible message-passing interface is to send

a contiguous run of bytes or GPU pixels across the net-

work. Contiguous messages work nicely with simple data

structures such as arrays, dense matrices, or regular grids.

Other applications, such as those sending sparse matrices or

irregular meshes, send and receive from noncontiguous regions

of memory.

A. Naive GPU Message Passing in CUDA

In CUDA, cudaMemcpy can copy data in either direction

between GPU and CPU memory. This call runs at over a giga-

byte per second between GPU memory and pinned CPU mem-

ory (unpageable memory allocated with cudaMallocHost).

Ordinary unpinned CPU memory copies run at about half this

bandwidth. One conceptual limitation with cudaMemcpy is

that both GPU and CPU buffers must be contiguous groups

of bytes; no stride or derived datatypes are allowed.

In CUDA, the per-memory-copy setup cost αM is sub-

stantial, around 10 microseconds per call, which is faster

than Ethernet but much worse than most high-performance

networks. Per-pixel time βM is much better, mostly limited

by the PCI Express bus to about a gigabyte per second, and

so GPU-CPU memory copy bandwidth is competitive with

modern networks.

A naive blocking implementation for contiguous GPU-to-

GPU data transmission is thus:

// Sending CPU code:

cudaMemcpy(cpuBuffer,gpuBuffer,n,...

MPI_Send(cpuBuffer,n,MPI_FLOAT,...

// Receiving CPU code:

MPI_Recv(cpuBuffer,n,MPI_FLOAT,...

cudaMemcpy(gpuBuffer,cpuBuffer,n,...

We expect this implementation to take CPU time t = 2 tM +

tN , and experimentally, it indeed does as shown in Figure 4 for

CPU overhead (repeated send time) and Figure 5 for end-to-

end time (pingpong time). The only minor detail to note is that

we should be sure to have previously allocated cpuBuffer

as pinned CPU memory, for higher copy bandwidth. It would

be best to manage this pinned memory in a single location in

the code, especially since pinned memory allocations currently

take absurdly long, millions of nanoseconds, as shown in

Figure 3.

Hence in cudaMPI we provide the following blocking inter-

face for GPU-to-GPU data transmission, which simply moves

Function Performance Model Tolerance

CUDA Kernel writing to GPU memory 4.9×103ns + n * 0.012 ns/byte +0%/-13%

CUDA Kernel writing to mapped CPU RAM 5.3×103ns + n * 0.5 ns/byte +0%/-20%

C++ new and delete (unpinned CPU RAM) 100 ns + n * 0.7×10−3ns/byte +94%/-58%

cudaMallocHost (pinned CPU RAM) 3.5×106ns + n * 0.7 ns/byte +0%/-23%

cudaMalloc (GPU memory) if (n < 2.05×103 bytes) then 1.49×103ns else 196.67×103ns + n * 0.13 ns/byte +0%/-8%

Fig. 3. Measured performance of CUDA functions operating on n bytes. GPU memory is faster than mapped CPU RAM, and pinned allocation is expensive.



the data copy call and related cpuBuffermanagement inside

the cudaMPI library. The result is exactly the MPI interface,

but with the data passed in as a GPU memory pointer:

// Sending CPU code:

cudaMPI_Send(gpuBuffer,n,MPI_FLOAT,...

// Receiving CPU code:

cudaMPI_Recv(gpuBuffer,n,MPI_FLOAT,...

Similar copy-communicate-copy wrappers can identically

be constructed around MPI_Bcast, MPI_Reduce and the

other collective MPI calls, whose performance we list in

Figure 6 for cudaMPI and plain MPI on the same hardware.

Note that even though we are communicating GPU data

buffers, the GPU is not at all involved in the communication

at this point, and hence can be busy doing other work.

B. Asynchronous GPU Message Passing in CUDA

Because both MPI_Recv and cudaMemcpy are blocking

functions, that do not return until their data transfer is com-

plete, with the blocking cudaMPI_Recv interface above, the

CPU cannot accomplish useful work during the transfer.

MPI provides nonblocking point-to-point communication

functions called MPI_Isend and MPI_Irecv, which return

an MPI_Request object that must subsequently be polled

to make communication progress. In CUDA, pinned CPU

RAM can be copied to or from the GPU asynchronously

using cudaMemcpyAsync, chained to other copies or kernel

executions in a CUDA “Stream”, and finally probed for

completion with cudaStreamQuery.

In principle, the code for an asynchronous CUDA send

would look like:

cudaMemcpyAsync(cpuBuffer,gpuBuffer,n,...

while (!cudaStreamQuery(s)) doWork();

MPI_Isend(cpuBuffer,n,MPI_FLOAT,...

while (!MPI_Test(&request,...)) doWork();

In practice, we invert this “doWork()” call structure. The

code actually getting work done issues a cudaMPI_Isend

to start the communication, then periodically calls a new

cudaMPI_Test function, which internally calls the appro-

priate communication or query function.

But for an application, choosing between asynchronous and

synchronous messaging is more subtle than it might appear.

For short messages, issuing cudaMemcpy costs αM , around

10,000ns; while issuing cudaMemcpyAsync costs much

less, around 1,000ns. The CPU can do useful application

work from that point on, yet overall cudaMemcpyAsync

takes much longer to complete, about 40,000ns. Issuing a

cudaStreamQuery costs 10,000ns of CPU time if the

transfer is still ongoing, but is nearly instant once the transfer

is finished. The most efficient approach, then, is to start the

transfer, do useful CPU work until the performance model

indicates the transfer should be finished, then issue one query

to verify that the transmission is complete. Asynchronous

transmission is hence only beneficial if the CPU’s additional

work during the transmission is worth the loss in end-to-end

communication latency.

C. Mapping CPU RAM for Faster CUDA Copies

The significant drawback of both the naive and nonblocking

message passing implementations described above is the mem-

ory copy latency αM . Each explicit memory copy operation

into and out of graphics memory must go through the CPU

kernel driver, as well as make several high-latency transactions

across the PCI Express bus. Worse, each GPU to GPU data

transmission requires two such copies, one on each end.

On the latest cards, CUDA as of version 2.2 supports

directly mapping specially allocated CPU RAM into GPU

address space [11], so the GPU can directly read or write

mapped CPU RAM over the PCI Express bus. Bandwidth,

and hence βM , is nearly identical to a direct memcpy. But

because mapped memory accesses are serviced in hardware,

they have a near-zero per-transaction αM cost. Still, Figure 3

shows the bandwidth of mapped access is dozens of times

slower than that of normal graphics memory, so it is not

affordable to simply run all GPU computations directly in

mapped CPU RAM. And unfortunately the reverse mapping

Function Performance Model Tolerance Discussion

cudaMemcpy (CPU-GPU) 11.20×103ns + n * 0.50 ns/byte +0%/-3% This αM cost gets added to each cudaMPI communication.

MPI Send (end-to-end) 47×103ns + n * 8.5 ns/byte +31%/-1% Half a round trip: counts CPU and network time.

cudaMPI Send (end-to-end) 72×103ns + n * 9.5 ns/byte +24%/-0% Must pay one αM + n βM on each end.

MPI Send (oneway) 4.3×103ns + n * 8.5 ns/byte +22%/-43% Repeated messages: counts CPU overhead only.

cudaMPI Send (oneway) 17×103ns + n * 9.5 ns/byte +16%/-41% Must pay cudaMemcpy cost.

cudaMemcpyAsync (CPU-GPU) 58×103ns + n * 0.5 ns/byte +29%/-2% Async copy has an even higher αM cost.

MPI Isend (oneway) 4.2×103ns + n * 8.5 ns/byte +23%/-37% Same cost as MPI Send.

cudaMPI Isend (oneway) 54×103ns + n * 9.5 ns/byte +15%/-43% Must pay higher cudaMemcpyAsync cost.

MPI Bcast (10 nodes) 16×103ns + n * 11.0 ns/byte +81%/-13% Similar cost to point-to-point message.

cudaMPI Bcast (10 nodes) 32×103ns + n * 13.2 ns/byte +56%/-19% Must pay memory copy costs.

MPI Reduce (10 nodes) 3.9×103ns + n * 13.1 ns/byte +61%/-30% β cost is higher due to MPI OP.

cudaMPI Reduce (10 nodes) 31×103ns + n * 14.2 ns/byte +38%/-42% α cost is due to copy in and out.

MPI Allreduce (10 nodes) 225×103ns + n * 20 ns/byte +74%/-0% Requires several network roundtrips.

cudaMPI Allreduce (10 nodes) 232×103ns + n * 21 ns/byte +72%/-0% Small additional cost.

Fig. 6. Measured performance for CUDA communication operations for varying numbers of bytes n over gigabit Ethernet.



is not yet supported, so one cannot access fast GPU memory

directly from the CPU.

However, because GPU-mapped CPU RAM can be accessed

directly by both CPU and GPU, this space can be used as a

temporary buffer for low-latency communication:

// Send side GPU kernel fills buffer

cpuBuffer[i]=...

// Sending CPU code:

MPI_Send(cpuBuffer,n,...

// Receiving CPU code:

MPI_Recv(cpuBuffer,n,...

// Receive size GPU kernel extracts data

... = cpuBuffer[i];

Ignoring the GPU kernel startup time, this should and does

take time t = 2 n βM + tN , which is missing the 2 αM term

(approximately 20,000ns) taken by a naive copy. Even if a

dedicated GPU kernel needs to be run for each copy, the

corresponding αK startup costs are still lower than the cost

for a memory copy. Finally, many real applications can fold

the message buffer copy into the preceding GPU computation,

as we examine in Section V.

D. Noncontiguous GPU Message Passing in CUDA

Some applications need to communicate only a small non-

contiguous subset of their GPU data. For example, a finite

element application with a 1 million node mesh sitting on the

GPU might only need to communicate forces for the 20,000

boundary nodes. We can handle noncontiguous communica-

tion by:

• Renumber the mesh’s nodes to force these boundary

nodes to sit together in one contiguous group on the

GPU, hence taking time t = 2 tM + tN . This works

nicely, but adds application-level complexity, and may

hurt performance for applications that had numbered their

nodes for better access locality.

• CPU copy the noncontiguous data by making many

separate contiguous memory copy calls, taking time t =

2 s αM + tN for s separate small sections. Unfortunately,

the memory copy startup overhead αM is far too big to

make this feasible. For example, copying out s =20,000

nodes at 10 microseconds each would take 0.2 seconds!

• GPU copy the noncontiguous data into a contiguous

buffer by running a special GPU kernel that gathers up the

data on the send side, use the CPU to copy out and deliver

the resulting buffer, and finally scatter the data back out

with a receive-side GPU kernel. The communication time

is hence t = 2 tK +2 tM + tN . The main cost here is the

extra GPU kernel invocation time αK , unless this can be

folded into the previous and next kernels.

• Map noncontiguous buffers into the CPU, which can

then gather the data needed into a contiguous buffer. This

relies on the PCI Express bus hardware to reduce the per-

copy overhead. Currently CUDA mapping as described in

Section III-C can only go the other way, providing GPU

access to CPU buffers.

Currently, the best approach for noncontiguous communi-

cation is to use a GPU kernel to copy the noncontiguous data

into a contiguous and GPU mapped portion of CPU RAM.

IV. GPU COMMUNICATION IN OPENGL

OpenGL applications store their application data in textures,

which are simply 2D or 3D arrays of pixels. Each pixel can

store a single float (GL_LUMINANCE32F_ARB), four floats

(GL_RGBA32F_ARB), or a variety of lower-precision data

formats. Textures can be read freely, taking the place of arrays

(and all other data structures) in GPU programs called pixel

shaders. New textures are created on the GPU by running a

pixel shader in an output device called an OpenGL framebuffer

object. A pixel shader’s only side effects are the new pixels

written into the current output texture, and the same texture

cannot be used for reading and writing at the same time.

Though this lack of random write capability makes data access

race conditions impossible, it also makes some algorithms

difficult to express efficiently.

In OpenGL, glReadPixels copies GPU framebuffer

pixels to CPU memory, and glDrawPixels and

glTexSubImage2D copy CPU memory into GPU

framebuffer or texture pixels. All three calls work with

any 2D rectangle of GPU pixels, although they require a

contiguous CPU buffer. These functions also synchronize

with the GPU, waiting until any pending commands are

complete, and then block the CPU until the copy is complete.

An asynchronous data copy can be achieved using pixel buffer

objects, OpenGL’s abstraction for memory areas. OpenGL

supports a command called glMapBuffer to give the

CPU direct access to an OpenGL buffer, but unlike CUDA

host-mapped memory this command seems to normally be

implemented via a whole-buffer copy from GPU to CPU

memory, which limits performance.

Function Performance Model Tolerance Discussion

glReadPixels 31×103ns + n * 1.0 ns/byte +0%/-28% High α, but bandwidth is good.

glDrawPixels 22×103ns + n * 3.8 ns/byte +94%/-10% Poor bandwidth, especially for below-64KB transfers.

glTexSubImage2D 40×106ns +30%/-0% Internally copies the entire texture (not just the “SubImage”).

glBufferData (PBO) 382 ns + n * 0.5 ns/byte +2%/-39% Pixel Buffer Object (PBO) gives excellent latency and good bandwidth.

glTexSubImage2D (PBO) 3.14×103ns + n * 0.38 ns/byte +3%/-1% This function is much faster loading data from a Pixel Buffer Object.

glMPI Send (oneway) 40×103ns + n * 10.7 ns/byte +4%/-48% α is mostly by the receive-side glReadPixels, β mostly the network.

glMPI Send (end-to-end) 91×103ns + n * 10.7 ns/byte +19%/-4% Includes network latency.

Fig. 7. Measured performance of OpenGL operations for varying numbers of bytes n over gigabit Ethernet. glTexSubImage2D from a PBO is fast.



Rendered pixels can be extracted from an OpenGL frame-

buffer object onto the CPU using glReadPixels, which

has reasonable latency and obtains near-peak bandwidth. No

corresponding pixel extraction call exists for textures, though

a texture can be attached to a framebuffer and then read with

glReadPixels. This appears to be the best way to send

data from a GPU in OpenGL.

Receiving data into an OpenGL texture efficiently is much

trickier. The glTexSubImage2D interface works, but when

called from ordinary CPU data to modify a texture that is

also mapped as a framebuffer object, its performance appears

to become proportional to the total size of the texture, not

the size of the changed region. For a typical application that

communicates only a few kilobytes from a hundred-megabyte

texture, this call is hence extremely slow. For these large

textures glDrawPixels has a much smaller αM startup

cost, but only provides a fraction of the bandwidth we might

expect. Pixel buffer objects provide similarly poor bandwidth

when used with glDrawPixels.

Substantially higher performance can be achieved this way:

1) Allocate a pixel buffer object of the appropriate size.

2) Map the pixel buffer object into CPU memory using

glMapBuffer.

3) MPI_Recv the network data directly into the pixel

buffer object.

4) Unmap and glTexSubImage2D the pixel buffer ob-

ject into the desired region of the texture.

The blocking glMPI implementation is hence:

//Send pixels from the current framebuffer

int glMPI_Send(int X, int Y, int W,int H,

GLenum F,int P, int T, MPI_Comm C)

{
glMPI_Buf buf(W,H,F); // CPU buffer

glReadPixels(X,Y,W,H,

buf.glformat,buf.gltype,buf.data);

return MPI_Send(buf.data,buf.count,...);

}

//Receive pixels into the current texture

int glMPI_Recv(int X, int Y, int W,int H,

GLenum F,int P, int T, MPI_Comm C,...)

{
glMPI_BufSize buf(W,H,F);

GLuint pbo=...pbo recycling omitted...

GLenum pt=GL_PIXEL_UNPACK_BUFFER_ARB;

glBindBuffer(pt, pbo);

// Receive directly into CPU-mapped PBO

void *V=glMapBuffer(pt,GL_WRITE_ONLY);

MPI_Recv(V,buf.count,...);

glUnmapBuffer(pt);

// Upload received data to GPU texture

glTexSubImage2D(GL_TEXTURE_2D,0,

X,Y,W,H,buf.glformat,buf.gltype,0);

glBindBuffer(pt, 0); /* restore PBO */

}

Fig. 8. Powerwall used to benchmark cudaMPI and glMPI.

This results in quite reasonable latency and bandwidth for

glMPI communication, as shown in Figure 7. One significant

advantage of the glMPI communication interface over that of

cudaMPI is the ability to send arbitrary rectangles of pixels.

Also, nearly identical performance is obtained whether sending

wide flat rows or tall skinny columns of pixels—this is due to

the GPU storing textures not in row or column major form,

but in swizzled layout [12] following a space-filling curve.

V. APPLIED PERFORMANCE ANALYSIS

We recently upgraded our 20-screen, 10-node powerwall

display and compute cluster3 with ten NVIDIA GeForce GTX

280 graphics cards. Figure 8 shows this cluster running a

GPGPU wave simulation application built using glMPI and

our powerwall display library MPIglut [6].

We used both cudaMPI and glMPI to parallelize a

distributed-memory GPU cluster port of an existing trivial MPI

5-point stencil 2D simulation application with 1D decompo-

sition. The simulation stores one floating-point temperature

at each pixel on a 2D grid, and at each step averages the

temperatures from the left, right, top, and bottom neighbors,

which costs just four floating-point operations per output pixel.

A. Stencil Performance in cudaMPI

Stencil computations like this are normally memory bound.

Stencils are also known to be somewhat tricky to tune in

CUDA [13] because the stencil’s memory reads cannot all be

aligned in memory (e.g., if the left access is aligned, then

the right cannot be), and hence the GPU cannot coalesce

the stencil’s memory accesses. First fetching input data using

3Ten nodes with Intel Core2 Duo 6300 CPUs, CUDA 2.2, NVIDIA 185.18
driver, Linux 2.6.24, OpenMPI 1.3, switched gigabit ethernet.



# GPUs Output Rate Computation Network Efficiency

1 6.1 Gpix/s 7.81 ms - ms 100%

2 11.3 Gpix/s 3.91 ms 0.35 ms 92%

3 16.2 Gpix/s 2.62 ms 0.35 ms 88%

4 20.7 Gpix/s 1.97 ms 0.36 ms 84%

5 25.0 Gpix/s 1.58 ms 0.35 ms 81%

6 28.5 Gpix/s 1.32 ms 0.37 ms 77%

7 32.4 Gpix/s 1.13 ms 0.36 ms 75%

8 35.3 Gpix/s 1.00 ms 0.37 ms 71%

9 38.2 Gpix/s 0.91 ms 0.39 ms 67%

10 40.7 Gpix/s 0.80 ms 0.39 ms 66%

Fig. 9. cudaMPI time per step for 48 Mpix problem on gigabit Ethernet.

coalesced reads, and then using a CUDA __shared__ buffer

for neighboring values, results in about a fourfold perfor-

mance improvement on older GeForce 8000-series hardware,

although the benefit is only about 40% on the new GTX series

cards with their lower penalty for noncoalesced memory ac-

cesses. With our tuned GPGPU simulation each GPU produces

over six billion floating-point pixels per second, over twenty

times faster than our original CPU-based simulation. This pixel

rate appears to be similar to that achieved by an advanced

machine-tuned 3D stencil implementation running on the same

hardware by Datta et al [3].

Though the bulk of the simulation’s data is permanently

stored on the GPU, it took only a few lines of code to ex-

change the simulation boundary data with adjacent distributed-

memory GPU compute nodes using cudaMPI_Send and

cudaMPI_Recv. Though easy, these blocking calls do not

allow any overlapping of computation and communication.

In general it is difficult to obtain high parallel efficiency

when combining a fast GPU like the GeForce GTX 280 with

a relatively slow network like gigabit Ethernet.4 However,

since both fast GPUs and commodity network clusters are

increasingly common, we feel this combination of hardware is

a useful research target. Figure 9 shows cudaMPI’s delivered

performance per step on our stencil application for a fixed-

size 3,000 by 16,000 pixel problem, the largest such problem

that would fit on a single node. At each step, from each GPU

cudaMPI sends and receives two 12KB messages, which takes

0.35ms, or a throughput of around 65MB per second per

node per direction, acceptable for gigabit ethernet. Parallel

efficiency is impacted by this non-overlapped network time,

which would be reduced when using a faster network. Also,

for a more computation-intensive nontrivial problem, this

small and fixed communication cost would represent a smaller

fraction of the total runtime.

Adding nonblocking communication only improves this

version’s efficiency by a few percent, mostly because there is

no useful work for the CPU to do during the communication.

Similarly, though CUDA’s GPU-mapped CPU RAM allows

us to fold the memory copy cost into the GPU kernel, this

4Parallel GPU clusters are the polar opposite of 1997’s beloved ASCI Red,
which used slow 200MHz Pentium CPUs on a fast 800MB/s interconnect.

# GPUs Output Rate Computation Network Efficiency

1 - - - -

2 20.4 Gpix/s 2.01 ms 0.34 ms 85%

3 27.8 Gpix/s 1.36 ms 0.36 ms 78%

4 34.2 Gpix/s 1.06 ms 0.35 ms 72%

5 39.2 Gpix/s 0.85 ms 0.37 ms 66%

6 43.7 Gpix/s 0.72 ms 0.38 ms 61%

7 47.9 Gpix/s 0.63 ms 0.37 ms 57%

8 51.3 Gpix/s 0.55 ms 0.38 ms 54%

9 53.3 Gpix/s 0.51 ms 0.39 ms 50%

10 55.3 Gpix/s 0.47 ms 0.40 ms 46%

Fig. 10. glMPI time per step, same problem on gigabit Ethernet. The
problem exceeds OpenGL’s texture size limit on one GPU.

transformation adds substantial complexity, while the bottom

line performance improvement is quite small.

B. Stencil Performance in glMPI

OpenGL’s support for texture access is very good. In par-

ticular, unlike CUDA global memory reads, OpenGL texture

accesses are cached, so no special code transformations are

needed to decrease global memory bandwidth usage. We

obtained surprisingly good performance from an extremely

simple OpenGL pixel shader, which implements the same

4-point stencil that required 35 lines to optimize in CUDA.

OpenGL’s sequential performance on this code is almost dou-

ble that of CUDA, which implies our CUDA implementation

could be improved, perhaps by using CUDA arrays (the

CUDA interface to the GPU’s texture hardware).

Our OpenGL implementation’s timeloop looks like this:

for(t=0;t<niterations;t++) {
// Exchange boundaries with GPU neighbors

SRC->bind();

glMPI_Send(1,1, WIDTH,1, type, ...

glMPI_Send(1,DEPTH, WIDTH,1, type, ...

glMPI_Recv(1,DEPTH+1,WIDTH,1, type, ...

glMPI_Recv(1,0, WIDTH,1, type, ...

// Run stencil computation on our data

GPU_RUN(*DEST,

" float l=texture2D(SRC,P+vec2(-S,0.0));"

" float r=texture2D(SRC,P+vec2(+S,0.0));"

" float t=texture2D(SRC,P+vec2(0.0,-S));"

" float b=texture2D(SRC,P+vec2(0.0,+S));"

" gl_FragColor=0.25*(l+r+t+b);"

)

SRC->swapwith(*DEST); //pingpong

}

In the end, glMPI’s communication performance is very

similar to cudaMPI, which is reassuring since both interfaces

use the same hardware. Figure 10 shows glMPI’s delivered

performance on our GL stencil application for the same

fixed-size 3,000 by 16,000 pixel problem. Unfortunately, the

dimensions of this problem exceed our OpenGL driver’s fixed



8192x8192 pixel texture size limit, so performance measure-

ments begin with 2 GPUs. We calculated parallel efficiency

by assuming one GPU’s computation time would be double

the two GPU computation time (i.e., perfect speedup of the

computation portion).

VI. CONCLUSIONS AND FUTURE WORK

As general-purpose graphics processing units are adopted

more and more widely, application developers will need well

designed and high performance libraries to use on this new

hardware. We have presented and benchmarked cudaMPI and

glMPI, message passing libraries for distributed-memory GPU

clusters. cudaMPI extends the popular parallel programming

interface MPI to work with data stored on the GPU using

the CUDA programming interface. glMPI does the same for

OpenGL GPU programs. We have carefully examined the

performance of both implementations, and find them useful

for real applications.

As is good software design, a single application can ar-

bitrarily mix functionality from the libraries CUDA, MPI,

cudaMPI, OpenGL, and glMPI. Because the machine’s native

MPI library is used in a straightforward way, it is even possible

to send floating-point data from CUDA with cudaMPI_Send

and receive it into OpenGL pixels with glMPI_Recv, or send

from OpenGL and receive on the CPU with MPI_Recv. This

sort of communication orthogonality is useful both for debug-

ging simple applications and for decoupling the components

of more complex applications.

Still, both cudaMPI and glMPI are incomplete in several

senses. First, neither implements the full range of features

supported by MPI. Some missing features, such as derived

datatypes with noncontiguous storage, would be very difficult

to implement efficiently on the GPU with currently available

GPU interfaces, which usually assume contiguous CPU-side

storage. Other missing features, such as MPI communicator

splitting, can be handled adequately by the underlying native

MPI implementation. Both cudaMPI and glMPI require fre-

quent CPU attention even in non-blocking mode; a more fully

asynchronous interface such as Wesolowski’s offload API [14]

would allow less CPU-GPU coupling. It is also likely that new

GPU-specific communication primitives could be added, such

as a collective communication operation to build higher texture

mipmap levels from distributed texture pieces, which would be

very useful in multigrid applications.

We have not addressed the interesting topic of load bal-

ancing, which can be even more difficult on a hybrid SMP-

SLI CPU-GPU cluster than a conventional CPU-based parallel

machine. We believe that an MPI library capable of internode

process migration, such as our Adaptive MPI [5], could be

a very useful tool for solving these dynamic load balancing

problems. For today’s ubiquitous multicore machines, cud-

aMPI is designed to be threadsafe, although like MPI cudaMPI

could provide much better specialized multicore support.

In the future, it would be also useful to create message-

passing interfaces for other GPU programming interfaces, such

as Microsoft’s DirectX, which supports some new graphics

operations better than OpenGL. Also, as implementations of

the multivendor OpenCL interface become available, it would

be useful to create a corresponding implementation of MPI to

communicate OpenCL data.

We welcome readers to download [15], use, and extend

cudaMPI and glMPI!
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