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Abstract Unstructured meshes are used in many en-
gineering applications with irregular domains, from elas-
tic deformation problems to crack propagation to fluid
flow. Because of their complexity and dynamic behav-
ior, the development of scalable parallel software for
these applications is challenging. The Charm++ Paral-
lel Framework for Unstructured Meshes allows one to
write parallel programs that operate on unstructured
meshes with only minimal knowledge of parallel comput-
ing, while making it possible to achieve excellent scalabil-
ity even for complex applications. Charm++’s message-
driven model enables computation/communication over-
lap, while its run-time load balancing capabilities make
it possible to react to the changes in computational load
that occur in dynamic physics applications. The frame-
work is highly flexible and has been enhanced with nu-
merous capabilities for the manipulation of unstructured
meshes, such as parallel mesh adaptivity and collision
detection.1

1 Introduction

For the past forty years, a significant fraction of all com-
puting cycles have been spent solving discretized differ-
ential equations on grids. Mechanical engineers use the
stress-strain relationship to simulate the static and dy-
namic loading, impact and failure response of buildings,
cars, airplanes, rockets and every other human artifact.

1 This work was supported in part by the National Sci-
ence Foundation (DMR 0121695 and NGS 0103645) and the
Department of Energy (B341494).

Electrical engineers use Maxwell’s equations to simulate
electric and magnetic fields in silicon chips, motors, light
bulbs, radio antennae and space satellites. Oceanogra-
phers use shallow-water wave equations to simulate the
phases and amplitudes of tides and tsunamis in the
world’s oceans. Theoretical astronomers use Einstein’s
general relativity to simulate space-time gravity waves
emanating from merging neutron stars.

Each of these applications demands considerable
computing power and hence necessitates parallel compu-
tation. Each has its own dynamic or idiosyncratic per-
formance aspects and hence is difficult to tune and load
balance. Each must be developed by application scien-
tists, not computer scientists. But each hour spent devel-
oping these applications is an hour the scientist cannot
spend experimenting, analyzing and understanding—in
short, time spent writing code is valuable time lost.

The UIUC Parallel Programming Laboratory’s over-
arching goal is to reduce the amount of time application
scientists spend writing high-performance parallel soft-
ware. To do this, we have developed a foundation of soft-
ware infrastructure called Charm++[1]. Charm++ con-
sists of a variety of broadly applicable high-performance
tools integrated in a single run-time system. Virtu-
alization techniques are employed for hiding latency
via message-driven execution[2], automatic application-
independent load balancing[3], automatic communica-
tion optimization[4], check-pointing[5], fault tolerance[6,
7], and performance visualization and analysis[8]. All of
these tools help make a parallel code run better, but
even with Charm++, developing a new parallel program
still requires many hours of effort. By providing domain-
specific support, in this case for solving problems on un-
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structured grids, we hope to make it easier for applica-
tion scientists to develop new parallel programs.

A preliminary finite element framework[9] was de-
veloped as part of this effort. The framework effectively
separated the parallelization process from the problem-
domain modeling and numerics, enabling applications
scientists to focus on the problem, and computer scien-
tists to focus on the parallel implementation. The pre-
liminary framework enabled automatic load-balancing
which proved very useful, especially for complex and dy-
namic applications.

This paper details ParFUM, a Parallel Framework for
Unstructured Meshes, that like the original Charm++

FEM framework[9] allows unstructured-mesh applica-
tions to be easily parallelized. But ParFUM goes beyond
the original framework with the following new function-
ality.

– ParFUM supports mesh ghost elements, multiple el-
ement types, detailed boundary conditions, parallel
partitioning, and mesh adaptivity. Each of these will
be described in detail in the following sections.

– ParFUM uses a library-like control structure, where
the user code controls the outer loop (often the time
or iteration loop) and makes occasional calls into the
framework to perform communication. Previously,
the framework ran the time loop and called user
code at well-defined points, which was slightly more
straightforward for explicit classical structural dy-
namics computations, but was much less flexible. Al-
lowing the user to control the sequence of operations
expands the scope of the framework to allow steady-
state computations, implicit (matrix-based) solution
methods, predictor-corrector timesteps, special start-
up and shutdown phases, and all the other idiosyn-
crasies needed by complex applications.

– ParFUM now allows the user code to mix in arbitrary
parallel communication calls in MPI with mesh com-
putations. Both plain native MPI (for portability)
and Charm++ Adaptive MPI[10] (for load balanc-
ing, check-pointing, etc.) are supported. Previously,
the framework performed all communication, and
whatever communication primitives provided were
inevitably insufficient for a few applications.

– ParFUM supports user programs written in C or
FORTRAN 90, in addition to C++. Users in the sci-
entific community found the older framework’s heav-
ily templated C++ code confusing, and a poor fit to
their existing dense-array-based numerical codes.

2 Charm++ and AMPI

ParFUM is built upon the Charm++[11] infrastructure
for parallel programming. It therefore inherits support
for capabilities such as dynamic load balancing[12], auto-
matic check-pointing, communication optimization and
processor virtualization[13]. Charm++’s highly portable

nature also means ParFUM can run on a wide variety of
computer architectures and operating systems.

2.1 Processor Virtualization

Processor virtualization[13] is the core idea behind
Charm++. The programmer partitions her computation
into a large number of objects, or virtual processors,
without concern about the number of physical proces-
sors available. The user views the application in terms
of these virtual processors(VPs) and their interactions.
The Charm++ run-time system allows the VPs to inter-
act amongst each other through asynchronous method
invocation. Figure 1 shows the user’s view of an appli-
cation and one way that the Charm++ run-time system
might map the application to physical processors.

Fig. 1 Virtualization in Charm++

The Charm++ run-time system maps virtual pro-
cessors to physical processors, allowing user code to be
written without knowledge of the location of virtual pro-
cessors. This gives the run-time system the ability to
change the mapping of virtual processors to physical
processors in the middle of an execution. It is capable
of migrating virtual processors between physical proces-
sors at run-time. The Charm++ run-time system allows
for message delivery and collective operations such as re-
ductions and broadcasts in the presence of these migra-
tions. The run-time system can migrate objects during
execution to adapt to the changing load characteristics
of an application. Thus processor virtualization enables
us to perform measurement-based run-time load balanc-
ing. Distributed and centralized load balancers can be
developed to remap virtual processors to physical pro-
cessors. In the virtualization context, load balancing has
been used to scale molecular dynamics simulations to
thousands of processors[8]. We discuss load balancing
further in Section 2.4.

Another major benefit of processor virtualization is
the automatic adaptive overlap between computation
and communication. If one VP on a processor is waiting
for a message, another VP can run on the same physical
processor in the interim.

2.2 Adaptive MPI

Adaptive MPI (AMPI)[10] is an implementation of the
Message Passing Interface (MPI)[14,15] in Charm++.
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Each MPI process is a user-level thread bound to a
Charm++ virtual processor. The MPI communication
primitives are implemented as communication between
the Charm++ objects associated with each MPI pro-
cess. Traditional MPI codes can be used with AMPI with
slight modification, making it possible for these codes to
take advantage of automatic load balancing and adap-
tive overlap of communication and computation.

2.3 Multiphase Shared Arrays

Another feature of Charm++ used in ParFUM is the
Multiphase Shared Array (MSA)[16]. MSA is used ex-
tensively in the parallel partitioning (Section 3.4) com-
ponent of ParFUM. MSA is a distributed shared memory
model in which data is accessed in phases. In each phase
all the data elements in a particular array are accessed in
the same mode by all participant threads. The mode of
an array can be changed between phases. The different
modes supported by MSA are read-only, write and accu-
mulate. In the read-only mode participants can read as
many elements as they want. The write mode allows only
one participant to write to any particular data element.
In the accumulate mode, a commutative-associative op-
eration is used to accumulate data contributed by differ-
ent participants to a single element. In the accumulate
mode the final result at a data element depends only on
the values accumulated and not the sequence in which
they are accumulated.

MSA data elements can be load balanced at run time
on the basis of computation and communication load so
that data elements move to the processors where most
of their accesses originate. MSA can also be used to read
in a huge amount of data on one processor but store it
simply and efficiently on several processors.

2.4 Load Balancing

Many ParFUM applications involve simulations with dy-
namic geometry, and use adaptive techniques to solve
highly irregular problems. In these applications, load
balancing is one of the key factors for achieving high
performance on large parallel machines. Load balanc-
ing is especially useful for applications with refinement
where the amount of computation on a particular chunk
can change significantly as the number of elements com-
prising the chunk varies. It is also useful in applications
where the computational load for subsets of elements
varies over the duration of the simulation.

Built on top of the Charm++ load balancing
framework[17] and AMPI, ParFUM supports automatic
measurement based dynamic load balancing by migrat-
ing a chunk along with its AMPI thread. During the
execution of a ParFUM application, the load balanc-
ing framework collects workload information and object-
communication pattern on each processor. The load bal-

ancing decision module uses this information to redis-
tribute the workload, migrating the chunks from over-
loaded processors to underloaded ones. This approach
relies on a principle of persistence[13] that holds for most
physical simulations: computational load and communi-
cation structure of (even dynamic) applications tends to
persist over time.

We provide a rich set of load balancing strategies
and also allow users to implement their own. The load
balancing problem is a multi-dimensional optimization
problem, as it involves minimizing both the communica-
tion times and load-imbalances. Since it is an NP-hard
problem, producing an optimal solution is not feasible.
However, we have developed a rich set of heuristic strate-
gies such as:

– Greedy Strategy: This simple strategy organizes all
the objects in decreasing order of their computation
times. The algorithm repeatedly selects the heaviest
un-assigned object, and assigns it to the least loaded
processor. This algorithm may lead to a large number
of migrations. However, this simple strategy works
effectively in most cases.

– Refinement Strategy: The refinement strategy is an
algorithm which improves the load balance by incre-
mentally adjusting the existing object distribution,
especially on highly loaded processors. The computa-
tional cost of this algorithm is low because only some
processors are examined. Further, this algorithm re-
sults in only a few objects being migrated, which
makes it suitable for fine-tuning the load balance.

– Metis-based Strategy: This strategy uses the METIS
graph partitioning library[18] to partition the object-
communication graph. The objective of this strategy
is to find a reasonable load balance, while minimizing
the communication among processors.

3 ParFUM

This section describes the basic infrastructure of Par-
FUM. We lay the groundwork for ParFUM by first de-
scribing the terminology used throughout ParFUM and
this article, describing how communication works, how
ghost layers assist in maintaining an up-to-date mesh
and finally how an initial serial mesh is partitioned.

3.1 ParFUM Concepts and Terminology

The terminology used by ParFUM is as follows.

– Domain: The space in which the user is trying to
solve a problem. For example, when simulating cracks
in a motor housing, the domain is the housing. Re-
ality is 3-d plus time, but problems are often solved
in 2-d for simplicity and efficiency, and occasionally
time itself is considered just another axis of a static
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4-d solution domain. Real systems are also entirely
unbounded, but problems are almost always solved
inside a bounded or repeating domain.

– Node: An individual point in the problem domain.
Nodes always have at least coordinate data associ-
ated with them, and often include various solution
data as well.

– Element: A small piece of the problem domain, de-
fined by the nodes surrounding it. For example, a 2-
d simulation might use 3-node triangular or 4-node
quadrilateral elements, while a 3-d simulation might
use 4-node tetrahedra or 8-node hexahedra (bricks).
A typical simulation has a few million elements.

– Element Type: A particular kind of element. Par-
FUM supports partitioning and communication for
mixed meshes consisting of different element types.
Different element types have proven useful for crack
propagation, where special cohesive elements join the
faces of adjacent tetrahedra, and for fluid flow sim-
ulations, where interior and boundary elements have
different numerical requirements and hence different
types. ParFUM allows any fixed number of nodes per
element, and hence supports arbitrarily high order el-
ements or unique application-defined element types.

– Element Connectivity: The list of nodes surrounding
each element. This list is what actually defines the
element. In ParFUM, element connectivity is simply
stored as a large 2-d array of node numbers. Nodes
and elements are normally numbered starting from
0 in C, while the first node or element is normally
numbered 1 in FORTRAN. Internally the framework
uses 0-based numbers, but the interface routines can
convert to and from either numbering based on a
symbolic constant passed by the user.

– Solution Data: Numbers that represent some step in
the problem solution process. For example, a struc-
tural dynamics application might represent the defor-
mation of a bending bridge by storing the deforma-
tion (or displacement) at each node of the mesh. In
ParFUM, solution data is represented as an attribute
of the corresponding entity, as described below.

– Boundary Conditions: Some representation of how
the outside world influences the problem domain.
Boundary conditions can be used to immobilize or
force motion into parts of mechanical simulations,
inject and drain fluid from the boundaries of fluid dy-
namics simulations, and even couple simulations that
utilize different meshes and materials. For some ap-
plications, the processors along partition boundaries
can be treated as a special sort of boundary con-
dition. A particularly interesting type of boundary
condition is a rotational or translational periodicity,
for which ParFUM has some minimal support.

– Mesh: A group of nodes, elements, solution data,
and boundary conditions that together represent a
problem domain. In the field of mesh generation, by
contrast, a mesh normally does not include solution

data, and occasionally does not even include bound-
ary conditions. A ParFUM mesh normally includes
both solution and boundary data, in addition to com-
munication data used to knit the mesh across proces-
sors. In ParFUM, a mesh is represented as an opaque
mesh handle, and manipulated by making ParFUM
function calls. ParFUM directly supports a variety
of mesh operations, with single function calls to in-
sert or extract the element connectivity, solution data
and boundary conditions; read or write a mesh to a
disk file; partition a mesh into pieces for parallel ex-
ecution; reassemble a partitioned mesh into a single
piece; or perform a deep copy of an entire mesh.

– Chunk: One partition of a mesh. Normally each MPI
process has exactly one chunk of the mesh, although
in AMPI, multiple MPI processes normally coexist
on each processor.

– Sparse Element: An element used to represent bound-
ary conditions. The difference between normal el-
ements and sparse elements is in partitioning—
ignoring ghosts, each normal element is placed on
exactly one chunk/processor; but a separate copy of
a sparse element is placed in every mesh chunk that
contains the relevant nodes. For example, a 2-d com-
putation might define a sparse element type consist-
ing of 2-node lines that lie around the exterior bound-
ary of the domain, and represent the exact boundary
condition there using an integer attribute.

– Entity: A generic term for anything in a mesh that
can hold data: a node, an element, or a sparse ele-
ment.

– Attribute: An array of solution data associated with
an entity. For example, a structural dynamics simu-
lation might keep a displacement for each node. To
store this displacement in ParFUM, a dense array of
displacements for each node could be registered as
an attribute of the node entity.

– Shape Function: Stores the weight of a node’s solu-
tion value across space. Solution data, e.g. stored at
the nodes, normally bleeds out into the immediately
surrounding elements according to a weighted aver-
age of the surrounding nodes. Typical shape func-
tions are constant, for nearest-neighbor look-up; first-
order, for linear value interpolation; second-order, for
quadratic interpolation; and so on. Though critically
important to a problem’s numerics, shape functions
have no bearing on mesh partitioning or parallel com-
munication, and are hence ignored in plain ParFUM.
Because most of ParFUM’s functionality does not
need or use shape functions, it immediately works
with arbitrary novel or unique element types.

– Numerics: A catch-all term for “the things ParFUM
doesn’t help with”. Specifically, ParFUM ignores
time-stepping (e.g., Euler, Runge-Kutta), solution it-
erations (e.g., conjugate gradient, BiCG), element
types (e.g., first-order linear tetrahedra), and most
importantly element equations/physics (e.g., linear
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elastic or nonlinear viscoplastic deformation for me-
chanics, DNS or RaNS for fluid dynamics, etc.). The
things ParFUM does help with are listed in detail in
the next subsection.

A ParFUM application looks very much like a typical
MPI application. At start-up, the mesh is read in. Users
have their choice of reading their existing serial mesh on
processor 0 and partitioning on the fly, or partitioning
the mesh beforehand and reading the mesh partitions in
parallel in ParFUM format. Once the mesh is set up, the
program executes some sort of solution loop over time
or iterations (or other work) for the local chunk of the
mesh, occasionally communicating with other chunks as
described below.

3.2 ParFUM Communication

The most important feature to understand when con-
sidering ParFUM for a new application is the applica-
tion’s parallel communication needs. All communication
in ParFUM is performed on a partitioned mesh, although
the type of communication needed affects the mesh par-
titioning. ParFUM supports two types of communica-
tion: ghosts and shared nodes.

Most applications perform some sort of calculation
in which each node or element requires solution data
from its neighboring elements. This means that elements
on the boundary of a chunk require data from elements
on another chunk. ParFUM can solve this problem by
adding ghosts to each boundary of a chunk. A ghost en-
tity (element or node) is a local, read-only copy of a
real entity, a non-ghost, that exists on another chunk.
ParFUM provides a single collective call to update the
read-only ghost nodes or elements with the actual value
stored in the original. For many applications, this allows
nodes or elements at a chunk boundary to seamlessly
access data on another chunk. The exact definition of
“neighboring element” for ghosts varies from applica-
tion to application, but ParFUM supports a variety of
adjacencies as described in Section 3.3.

For example, a time-dependent finite element struc-
tural dynamics program with explicit time-stepping
might perform a calculation for each timestep as in Fig-
ure 2.

1. Zero the net force at each node

2. for each element

3. Compute stress from node deformations

4. Compute node forces due to element stress

5. Add element force to surrounding nodes

6. for each node

7. Use node’s net force to deform node

8. Apply node-based boundary conditions

Fig. 2 Pseudocode for a typical serial structural dynamics
program

An element computes its state based on the sur-
rounding nodes’ deformations in step 3 and contributes
forces to surrounding nodes in step 5. Then the nodes are
deformed (displaced) based on their total force in step
7. In a serial program, these loops run over the entire
mesh.

In a mesh partitioned for parallel execution by Par-
FUM, separate copies of the nodes on the partition
boundary are created. In the simple 1-d mesh of Fig-
ure 3, the original node e becomes e1 on chunk 1 and e2
on chunk 2. The problem with boundary nodes is that
they only receive forces from the elements on that pro-
cessor; so node e1 will only receive forces from element
M , and e2 will only receive forces from element L. Thus
in step 7, the nodes e1 and e2 will move incorrectly, since
they have an incomplete net force.

Fig. 3 A 1-d mesh with 8 nodes and 7 elements, partitioned
into two chunks. Note that boundary node e is duplicated
into copies e1 and e2.

Fig. 4 The same mesh, with ghost elements L′ and M ′ and
ghost nodes d′ and f ′.

To parallelize this application using ghosts, we set up
a ghost layer containing ghost elements adjacent to each
of our real nodes, as shown in Figure 4. We can then
compute the element stresses for all real elements, send
those stresses to the ghost copies of the elements (in this
case, L′ and M ′), and then use those stresses to compute
the net force on all our real nodes, as shown in Figure 5.
The shared nodes e1 and e2 will have the same net force,
because e1 = L′ + M = L + M ′ = e2.2 Note that the
new ghost nodes d′ and f ′ have an incomplete set of

2 Caveat: Since floating-point arithmetic is not associative,
shared nodes with more than two neighbors may not receive
exactly the same value up to round-off if evaluated in different
orders.
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element neighbors, and hence will receive an incomplete
net force, but we only care about real nodes, and in fact
in this case the ghost nodes can be omitted entirely. This
transformation assumes only the fact that elements first
read a value from their neighboring nodes (in this case,
deformation in step 3), compute a temporary variable
(stress) that can easily be sent across processors, then
write to their neighboring nodes (in step 5)—nothing
else, including linearity or separability of any operation,
is assumed.

1. Zero the net force at each node

2. for each real element

3. Compute stress from node deformations

3a.Communicate element stresses to ghost elements

3b.for each real or ghost element

4. Compute node forces due to element stress

5. Add element force to surrounding nodes

6. for each real node

7. Use node’s net force to deform node

8. Apply node-based boundary conditions

Fig. 5 Parallelized program that exchanges ghost element
stresses. Ghost nodes are not needed.

Another way to parallelize the same program is to be-
gin by exchanging ghost node deformation vectors. Then
all elements, real and ghost, have the inputs they need to
compute a valid stress and net force on their neighbors.
The complete listing is shown in Figure 6. Note that
now all the computations at each ghost element are du-
plicated, and we now need ghost nodes. However, it may
be less expensive or less invasive to send node deforma-
tions rather than element stresses. This transformation
relies only the fact that all the node deformations are
read (in step 3) before they are modified (in step 7), and
is hence the most general parallelization approach.

1. Zero the net force at each node

1a.Communicate node deformations to ghost nodes

2. for each real or ghost element

3. Compute stress from node deformations

4. Compute node forces due to element stress

5. Add element force to surrounding nodes

6. for each real node

7. Use node’s net force to deform node

8. Apply node-based boundary conditions

Fig. 6 Program parallelized using ghost nodes.

The final way to parallelize this program is to note
that each element’s step 5 computes a partial force, but
the forces are simply added together—that is, the effect
of each element combines at the nodes in a linear fash-
ion. Anytime this is the case, we can do away with ghosts
entirely, and simply compute a partial force sum on the
shared boundary nodes, then sum up the total force

across processors—in Figure 3, e1 gets the force from
M , e2 gets the force from L, and their sum L+M is the
correct net force on both nodes. ParFUM provides di-
rect single-call support for this linear shared-node sum-
mation operation. This approach shown in Figure 7 is
the simplest, as no ghosts are involved, but only works
with a linear operation at the force-combining phase in
step 5. Neither the element response in steps 3 and 4 nor
the node response in step 7 need be linear, and forces al-
ways combine linearly, and hence summation over shared
nodes is common for structural mechanics. But other
sorts of interactions, such as the inter-element fluxes in
fluid dynamics, often combine non-linearly (e.g., with
flux-limiter methods) so ghost nodes and elements are
often used in other fields.

1. Zero the net force at each node

2. for each real element

3. Compute stress from node deformations

4. Compute node forces due to element stress

5. Add element force to surrounding nodes

5a.Sum node forces across chunks (for shared nodes)

6. for each real node

7. Use node’s net force to deform node

8. Apply node-based boundary conditions

Fig. 7 Program parallelized using a sum over shared nodes.

In many matrix-based linear or linearized computa-
tions, one matrix-vector product is computed using steps
similar to 1-5, and can be parallelized using any of these
same three techniques. Initially, a vector of data, here de-
formations, is distributed across the nodes. Each element
can be seen as a small “stiffness matrix” that converts its
node displacements into a set of node forces. Together,
all the elements can be thought of as a global stiffness
matrix that convert a vector of node displacements into
a vector of node forces. In parallel, the entire input and
output node-data vectors do not exist on any processor,
but instead each processor owns its corresponding piece
of each vector as determined during mesh partitioning.
The shared node parallelization approach of Figure 7 in
effect divides up the columns of the stiffness matrix—
each processor uses its entries of the input vector to
compute a partial result for some of the rows of the out-
put vector, and then sums its partial results with those
of other processors to obtain the correct output values
for its entries of the output vector. The ghost node par-
allelization approach of Figure 6 divides up the rows
of the stiffness matrix—each processor first obtains all
the input vector entries (including both owned entries
and ghosts) it needs, then independently computes its
output vector entries. The ghost element parallelization
approach of Figure 5 factorizes the “force from deforma-
tion” stiffness matrix into two non-square “node force
from element stress” and “element stress from node de-
formation” matrices, both of which can be imagined to
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be divided along rows; between applying these two ma-
trices, we need a ghost communication step to obtain
stresses for our ghost elements.

In summary ParFUM’s communication mechanisms
and techniques for handling ghost layers apply well to
matrix-vector product methods and hence most matrix-
based applications, including those using linear or non-
linear iterative matrix solvers (e.g., conjugate gradient,
BiCG) that are built on matrix-vector products and vec-
tor operations. ParFUM’s methodology encourages such
mesh-free implicit representations because there is no
need to explicitly store any of these matrices—the “stiff-
ness matrix” representation can just be a list of elements
in the mesh and a loop, and no dense or sparse repre-
sentation is ever needed or assumed by ParFUM.

As in these examples, there are often several choices
for how to parallelize a given program. For some prob-
lems, the memory overhead of ghost nodes and ele-
ments is significant. But the choice is rarely particularly
critical—ParFUM directly supports communication over
shared nodes, ghost nodes, and ghost elements equally
well; the number of messages in all cases is exactly
equal to the number of neighboring mesh chunks; and
the amount of data exchanged is often approximately
equal as well. Hence users can parallelize their program
in whatever way fits best with their existing code.

3.3 Ghost Layers

As shown in Section 3.2, ParFUM adds ghost elements
and nodes to allow the elements along a chunk bound-
ary to access data from neighboring elements on another
chunk in a seamless manner. ParFUM allows the user to
specify what neighboring exactly means for a particu-
lar calculation. In a particular application two tetrahe-
dra that share an edge might be considered neighbors,
whereas in another case only tetrahedra that share faces
might be considered neighbors. The user can also have
multiple layers of ghosts for applications that need neigh-
bors of neighbors. The user describes the neighboring re-
lationship by specifying a face. An element will be added
as a ghost to your chunk if it shares a face with at least
one of your elements. The user specifies the number of
nodes that make up a face, the number of faces per ele-
ment and the list of faces in an element. The user might
choose to create ghost nodes for nodes of ghost elements
that do not already exist on a chunk.

Figure 8 shows a mesh broken up into two chunks.
Figure 9 shows each chunk with ghosts added for bound-
ary elements that share an edge. Since the shared face in
this case is an edge, each face has 2 nodes and each ele-
ment has three faces. Figure 10 shows the same chunks
with ghosts added for boundary elements that share a
node. In this case the shared face is a single node and
each element has 3 faces that they might share. As ex-
pected, the number of ghost elements is significantly
higher when the shared face is a node instead of an edge.

Fig. 8 A mesh with two chunks to which we shall add ghosts

/* 2 nodes per face: edge adjacency.

Add ghost nodes as well*/

FEM_Add_ghost_layer(2,1);

/*The faces(edges) in an element */

const static int tri2edge[]={0,1, 1,2, 2,0};

/*Triangles are surrounded by 3 edges */

FEM_Add_ghost_elem(0,3,tri2edge);

Fig. 9 The mesh in Figure 8 with ghosts added for bound-
ary elements that share edges. The shaded elements are the
ghosts. It also has the code segment for specifying this layer
of ghosts

/* 1 node per face: node adjacency.*/

FEM_Add_ghost_layer(1,1);

/*The faces(nodes) in an element */

const static int tri2edge[]={0,1,2};

/*Triangles are surrounded by 3 edges */

FEM_Add_ghost_elem(0,3,tri2edge);

Fig. 10 The mesh in Figure 8 with ghosts added for bound-
ary elements that share nodes. The shaded elements are the
ghosts
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ParFUM allows the user to create arbitrary ghost
layers by adding multiple layers of ghosts. For example
a user might add one layer of edge-based ghosts and an-
other layer of node-based ghosts around that. ParFUM
can create ghosts not only of things that are on other
processors, but also for various problem symmetries, like
mirror reflection, and various types of periodicities. The
interface for these ghosts is simple—you ask for the sym-
metries to be created, then you will get extra ghosts
along each symmetry boundary. The symmetry ghosts
are updated properly during any communication, even
if the symmetry ghosts are ghosts of real local elements
from the same chunk.

ParFUM can generate ghosts in serial as well as par-
allel. The parallel ghost generation is extremely useful
for the case where a large mesh has been partitioned in
parallel as described in Section 3.4. We do not want to
bring all the partitioned chunks back to one processor to
create the ghosts. This consumes too much memory on
processor 0 and fails for large meshes. Parallel ghost gen-
eration helps us avoid this bottleneck and lets ParFUM
solve large meshes for problems that need ghosts.

3.4 ParFUM Mesh Partitioning

ParFUM can partition an application’s serial mesh into
a large number of smaller parts or chunks. During parti-
tioning nodes and elements are given new local numbers.
Each element is assigned to one particular chunk. Nodes
shared between elements all on a particular chunk belong
to that chunk. Nodes that are shared between elements
on different chunks are duplicated in those chunks. We
refer to such nodes as shared nodes.

Figure 11 shows an example of an original mesh with
5 nodes and 3 elements. The connectivity of the elements
in the original mesh is shown in Table 1. ParFUM parti-
tions that mesh into two chunks A and B in Figure 12. in
a separate MPI process. ParFUM provides each chunk
with the connectivity and user data associated with its
elements and nodes. The connectivity of the elements of
the two chunks is shown in Table 2.

ParFUM also sets up a communication mapping be-
tween different copies of a shared node. Each chunk
keeps lists of the local numbers of shared nodes and
ghost nodes and elements to send and receive–these lists
of indices are used by the communication routines of
ParFUM. The lists are sorted such that if two chunks
share a node (or ghost, etc.), that node’s local number
is stored in the same entry of each chunks’ list—that is,
corresponding entries in the communication lists refer
to copies of the same shared node. The lists of shared
nodes for the chunks A and B in Figure 12 are specified
in Table 3.

ParFUM has both serial and parallel methods of par-
titioning the original mesh. The serial version reads in
the entire input mesh on processor 0 and then partitions

Fig. 11 A 2-d mesh with 3 triangular elements and 5 nodes

Element Adjacent Nodes

e1 n1 n3 n4
e2 n1 n2 n4
e3 n2 n4 n5

Table 1 Connectivity table for the mesh in Figure 11

Fig. 12 Partition of the mesh in Figure 11 into 2 parts A
and B

Connectivity data of Chunk A
Element Adjacent Nodes

e1 n1 n3 n4
e2 n1 n2 n4

Connectivity data of Chunk B
Element Adjacent Nodes

e1 n1 n2 n3

Table 2 Connectivity table for chunks A and B of the par-
titioned mesh in Figure 12

it into multiple chunks, using the graph partitioning tool
METIS [19,20,21] to obtain a mapping from elements to
chunks. Since partitioning is fairly memory intensive, it
is not always possible to partition a big mesh into a large
number of chunks using the serial partitioner. Moreover
building all the chunks on processor 0 means that at
some instant processor 0 not only stores the entire input
mesh, but also the chunks for all the other processors.

Shared Nodes on A Shared Nodes on B

n2 n1
n4 n3

Table 3 Shared node lists for the chunks A and B of the
partitioned mesh in Figure 12
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This increases the memory consumption on the already
loaded processor 0 even more.

Fig. 13 Maximum memory used by the serial partitioner
while partitioning a 200k element mesh into varying numbers
of chunks

Figure 13 shows the memory consumption on proces-
sor 0 while dividing a mesh of 200 thousand elements into
varying numbers of chunks. We can see that the memory
required increases when the number of chunks increases.
We could not even partition a large 2 million element
mesh into 12000 pieces due to insufficient memory. Thus
the serial partitioner suffers from a memory bottleneck
on processor 0 and stops us from solving problems that
we otherwise could have solved.

The parallel partitioner[22] eliminates the memory
bottleneck on one processor. Though we use ParMETIS
[23] to calculate the mapping from elements to chunks,
we parallelize the process of building chunks: sending
node and element data to the corresponding chunk, fig-
uring out the shared nodes and setting up the commu-
nication lists for the shared nodes.

The parallel partitioning algorithm can be broken up
into three parts.

1. Calculate a mapping of elements to chunk that tries
to minimize the number of elements on the bound-
aries between different chunks

2. Use the mapping from the previous step to create
chunks that contain all the data for the elements and
nodes mapped to them.

3. Find the nodes that are shared between different
chunks and set up communication lists.

In order to distribute the computation load more or
less equally among the processors, ParMETIS should be
called with the connectivity data for equal numbers of
elements on each processor.

We do this by using a trivial strategy to initially
break up the input mesh into chunks that contain the
same number of elements and nodes. Each process is
deemed to be responsible for the chunk that it gets dur-
ing the trivial partition. After the ParMETIS call, each

processor knows the mapping of each element that it is
responsible for.

The next step in the partitioning algorithm requires
us to find which nodes and elements belong to each
chunk. Each processor knows the chunk to which each of
the elements it is responsible for is mapped (henceforth
referred to as the owner of that element). Each processor
sends all the elements on it to their respective owners.

However sending the nodes to their owners is com-
plicated by two factors: each node might be owned by
multiple chunks and after the call to ParMETIS each
processor knows the owner for the elements but not the
nodes it is responsible for. As a first step to sending the
nodes to their owners, each processor finds the owners
of the nodes that are present in the connectivity of the
elements it is responsible for. The owner of an element
is one of the owners of all the nodes in the connectivity
of that element. This data is then collected over all pro-
cessors. From this each processor extracts the ownership
information for all the nodes that it is responsible for. It
then sends the node to all the chunks that own it.

Now each processor needs to set up the communica-
tion lists for shared nodes as mentioned earlier. For this
it uses the global node ownership information calculated
in the previous step. A chunk finds all the other chunks
that also own a node owned by it. Then it finds all the
nodes that a chunk shares with another chunk and uses
this information to set up the communication lists.

A number of steps in the parallel partitioning require
us to collect data scattered across multiple processors.
As an example, after the call to ParMETIS all the el-
ements owned by a particular processor are scattered
across different processors and need to be brought to
that processor. An operation like this seems well suited
for a distributed shared memory model.

We used MSA [16] because it not only simplified the
implementation, but also provided additional features
such as collecting the results locally before sending them
out to the destination processor. An MPI implementa-
tion would have been far more complicated.

We evaluate whether our implementation removes
the bottleneck on processor 0. A 200 thousand element
mesh is partitioned into 256 chunks on varying number
of processors. Figure 14 shows the memory consumption
on processor 0 for varying numbers of total physical pro-
cessors. On a single physical processor the parallel par-
titioning algorithm consumes nearly 4 times the serial
partition algorithm on a single processor. However the
memory consumption on processor 0 decreases with in-
creasing number of physical processors. The break even
point for this data set is around 3 processors, after which
the parallel implementation consumes less memory on
a given processor than the sequential one would. This
means that the parallel partitioning algorithm should be
used with this mesh for runs on more than 3 processors.
The memory consumption flattens out for higher num-
ber of processors as the decrease due to fewer chunks per
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processor is offset by more replication in MSA because
of the higher number of physical processors.

Fig. 14 Maximum memory used on processor 0 while par-
titioning a 200k element mesh into 256 chunks in parallel on
varying numbers of physical processors

A major problem with the serial partitioning algo-
rithm was that memory consumption on it increased as
the same mesh was broken into increasing number of
chunks. So ParFUM’s serial partitioner would limit the
scalability to large problems. This defeated the primary
purpose of the framework, which is to allow applications
to scale to large number of processors. We partitioned
the same mesh as above on a different number of proces-
sors into as many chunks as there are physical processors.
Figure 15 shows that memory consumption for both the
serial and parallel partitioners. As expected, the memory
used decreases with increasing number of processors in
the parallel case, whereas it increases in the serial case.

Fig. 15 Maximum memory used on processor 0 while parti-
tioning a 200k element mesh into different number of chunks.
The number of physical processors and chunks is the same

The parallel partition algorithm relieves the memory
bottleneck at processor 0. Although the parallel parti-
tioning algorithm consumes more memory than the se-
quential one when used on one processor, its memory

consumption falls below the sequential partitioner when
a sufficient number of processors are used. Thus runs
with large meshes, which would have been impossible to
partition with the sequential partitioner, become possi-
ble to partition with the parallel partitioner.

4 Extensions to the Framework

The basic structure and functionality of ParFUM de-
scribed above already allows for the development of a
wide variety of applications. However, certain applica-
tions will benefit from additional extensions to the basic
functionality. These extensions include methods for gen-
erating and accessing additional topological information
for the mesh, as well as various mesh modification and
adaptivity functions. This extended functionality is de-
scribed in the following subsections. None of these ex-
tensions existed in the Charm++ FEM framework, the
predecessor to ParFUM.

4.1 Topological Entity Relationships

By default ParFUM only stores element-to-node connec-
tivity information. The connectivity tables list the nodes
comprising each element in the mesh. In many applica-
tions it is desirable to access other topological informa-
tion directly. For example, element centered data might
be used to compute a force vector which will be applied
to a node. Thus, each node would need to sum the force
vector contributions from all of the adjacent elements.
To get these contributions from the adjacent elements,
an efficient way to determine node-to-element adjacen-
cies is needed. Similarly useful are the node-to-node and
element-to-element adjacencies. Thus it is desirable for
the application to have easy and efficient access to these
mesh adjacency information.

ParFUM provides these topological adjacency rela-
tionships by deriving them from the element-to-node
connectivity data structure which defines the mesh it-
self. The node-to-element adjacencies are the set of all
elements a node is shared with. The node-to-node adja-
cencies are computed such that two nodes are adjacent
if and only if their node-to-element adjacencies have at
least one element in common. Building the element-to-
element adjacencies is more complicated than the others.
It uses the same approach to define what a neighboring
element is as is used for ghost generation in Section 3.3.
The user can define two elements to be neighboring if
they share a node, an edge, or face.

Adjacency information refers to not only elements
and nodes on the local chunk but also includes a ghost
layer on the neighboring chunks. A remote entity that
is adjacent to a local entity is identified by the index of
its ghost copy on the local chunk. This allows users to
access topological data seamlessly across processors.



ParFUM: A Parallel Framework for Unstructured Meshes for Scalable Dynamic Physics Applications 11

The element-to-node connectivity data structure is
stored as an attribute associated with each element type
that exists in the mesh. It is a single, resizable, m×n 2-d
array, where m is the number of elements and n is the
number of nodes per element. The element-to-element
adjacency table is similarly stored with the element types
as an m × p array, where m is the number of elements
and p is the number of tuples per element. The node-to-
element and node-to-node adjacencies are not simple 2-d
arrays as are the element-based adjacencies. Each node
may be adjacent to any number of nodes or elements.
Thus these nodal adjacencies are stored as jagged arrays,
i.e. arrays of variable length vectors. The jagged array is
an attribute associated with the nodes. Each vector in
the array can be resized without needing to resize the
entire array.

ParFUM provides two ways to access adjacency data.
The first is by using the standard ParFUM functions
which provide access to arbitrary attributes. The second
way to access the adjacency information is to use Par-
FUM’s adjacency accessor functions. One accessor func-
tion returns all elements or nodes adjacent to a given
entity. Another can return just a single adjacent entity
which is on a given edge or face of the given element.
A final accessor can return which face of an element is
shared with a given element. A higher level of iterators
can also be easily created using these and other lower
level functions in ParFUM. The application described in
Section 5.1 uses its own adjacency iterators built upon
these accessors.

ParFUM also provides methods to modify the adja-
cency information of elements and nodes. These are used
mostly by the mesh modification extensions in ParFUM
described in Section 4.2.

4.2 Modification of Parallel Meshes

Adaptivity of meshes is an important feature for a ro-
bust mesh simulation framework. Adaptivity can pro-
vide better numerical accuracy in simulations with min-
imal increases in computation time. Providing support
for adaptivity of meshes in parallel is not as simple as it
would be for a serial mesh on a single processor. More-
over, some applications need to perform incremental and
unsynchronized modifications to their parallel meshes.
One application that needs parallel mesh modification
is the adaptive space-time meshing algorithm[24,25], de-
scribed in Section 5.1. In order to support different forms
of mesh modification in ParFUM, we decided to create a
simple but robust abstraction that would support a wide
range of application needs. The modifications included
in this ParFUM extension are not limited to subdivi-
sion of existing elements, as is the case in many mesh-
ing packages that support adaptivity. The mesh modi-
fication functions in a ParFUM application can be per-
formed at any time, without any global synchronization.

ParFUM’s mesh modification abstraction contains
four mesh modification primitives: add an element, re-
move an element, add a node, and remove a node. Each
primitive performs a simple operation, but maintains the
consistency of the mesh across all processors. Maintain-
ing this consistency is non-trivial, and it includes modify-
ing ghost layers and changing adjacency information. A
consistent mesh must have a single ghost layer in which
elements are considered to be neighbors if they share a
single node like in the example shown in Figure 10 in
Section 3.3. We hope to relax this requirement to allow
different types of ghost layers in the future. The mesh
must contain no hanging nodes, if the elements around
the hanging node are to be considered adjacent. The
abstraction does, however, allow creation of element-to-
element adjacencies in a flexible user-prescribed manner.
A user may not remove any node which is still adjacent
to one or more elements, nor create an element with non-
existent nodes. A final assumption for our abstraction is
that all adjacency tables are consistent and accurate. For
example, it should never be the case that two nodes are
adjacent in some table if they are both not adjacent to
a common element.

Adding and removing nodes are simpler operations
than the other primitives. However, these operations are
still non-trivial since newly added nodes might be in-
serted along a boundary between chunks and are thus
shared nodes. When adding a node, an optional list of
nodes that are adjacent to the given node can be pro-
vided. This parameter is used to determine whether to
create the new node as a local or shared node. If all nodes
in the given list are shared with the same chunk, the new
node will also be shared. This allows the insertion of a
node between a set of nodes, such as on an edge or face
of an existing element. Although the list is given, it is
only used for determining whether the node should be
shared. The nodal adjacencies for the new node will only
be created when an element connected to that node is
created.

Adding an element is one of the primitives which can
create either a local element or create an element in the
local ghost layer. The default behavior creates a new
element locally and updates neighboring ghost layers if
it is a ghost on some other chunk. Adding an element
in the ghost layer is quite similar, except we have to
compute the chunk where the actual element is to ex-
ist and communicate to that chunk that it should cre-
ate the element. When the element is created on that
chunk, ghosts are created and updated on the neighbor-
ing chunks. Supporting both operations allows for clarity
of adaptivity algorithms that operate in regions along
mesh chunk boundaries.

Although conceptually simple, the implementation in
parallel is complicated. After the new element is added
on any chunk, that chunk must update all of its adja-
cency tables. A further difficulty for the implementation
of this primitive is maintaining the local to remote entity
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index mappings. Since multiple operations may occur on
a single chunk simultaneously, care must be taken to en-
sure that no race conditions occur when updating these
distributed data structures.

To remove an element, we first remove the local
copy of the element, along with references to the ele-
ment in adjacency tables. A message is then sent to all
chunks which contain that element as a ghost. The re-
mote chunks will delete their ghost copies of the element.
After the element is removed, the ghost layers on the
originating chunk and all chunks which had the element
as a ghost must be updated. Updating the ghost layers
is a complicated operation since elements may need to
be removed from multiple chunks.

We show in Section 4.3 that our abstraction is pow-
erful enough to easily build important mesh adaptivity
functions.

4.3 Parallel Mesh Adaptivity

The ability to adapt unstructured meshes is important
to dynamic physics simulations. Providing this function-
ality in ParFUM expands the capabilities of the frame-
work to handle a wide variety of challenging simulations.
This functionality proves its usefulness in several ways:

• Poor quality elements (thin triangles, “sliver” tetra-
hedra) can result in a loss of accuracy and numerical
stability in physics simulations. Smoothing and local
mesh repair operations can alleviate some of these
problems.

• Solution accuracy is also affected by the granularity
of the mesh in terms of element size. A finer mesh will
capture a solution more accurately. However, main-
taining a fine mesh is costly. Refinement and coars-
ening operations make it possible to refine a mesh
where more activity is occurring and coarsen it in
less dynamic regions.

• Simulations may exhibit dramatic behavior differ-
ences amongst the elements (see Section 5.3). This
can lead to mesh partitions that take much more time
to compute than others, resulting in load imbalance.
While Charm++’s virtualization and load balancing
abilities can take care of some of this, it may be nec-
essary to do dynamic repartitioning to obtain a fully
balanced state.

• Similarly, refinement and coarsening may result in
mesh partitions with drastically differing numbers of
elements, also causing load imbalances. It is conceiv-
able that a partition could refine so much that its
processor is overloaded even after all other partitions
have been migrated away. Dynamic repartitioning is
also beneficial in such situations.

Thus we see that what we mean by the ability to
adapt a mesh consists of the ability to smooth, repair,
refine and coarsen a mesh, as well as to adjust the parti-
tioning of the mesh at run-time. Which of these methods

Fig. 16 Three primitive mesh adaptivity operations: (a) flip
edge; (b) bisect edge; (c) contract edge

applies is largely governed by the physics being simu-
lated.

Given ParFUM’s parallel mesh modification capabil-
ities and adjacency information, we have implemented
several primitive mesh repair, refinement and coarsen-
ing operations. These operations can be used on their
own, or by user applications for special purpose mesh
adaptivity operations. They are also used for refinement
and coarsening algorithms provided to the application
developer by the framework.

The basic 2-d operations provided are shown in Fig-
ure 16. A flip edge operation modifies two elements that
share an edge by removing and reinserting the edge be-
tween the two nodes of the elements that are opposite
the original edge. A bisect edge operation inserts a node
on an edge and adds edges between the new node and
the two nodes opposite the original edge. A contract edge
operation removes the one or two elements adjacent to
an edge, contracting the two end nodes to a single node.
In addition to these operations, we have a remove node
operation which acts as the inverse of bisect edge by re-
moving a degree-4 node and two adjacent elements. We
also have a split node operation that acts as the inverse
of contract edge by adding a new node and an edge be-
tween the old and new nodes along with two elements
adjacent to the new edge.

In 3-d, our implementation includes Delaunay 2-3
and 3-2 flip operations. The 2-3 flip involves transform-
ing two elements that share a face into three elements
that share an edge. The 3-2 flip is the inverse operation
of the 2-3 flip. We have a bisect edge operation that bi-
sects an edge, adding a node along the edge and splitting
in two an arbitrary number of elements adjacent to that
edge. Two additional refinement operations involve in-
serting a new node into the volume of a tetrahedra or
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onto a face. Inserting a node on a face with the split face
operation splits each of the two neighboring elements
into three elements. The split element operation splits
the element into four tetrahedra with the insertion of a
single node.

Figure 17 presents an example mesh of a 2-d rect-
angular bar, running on 4 processors. In an experiment,
a long vertical strip along the center of the bar is re-
fined for a couple of steps using refinement primitives.
A smoothing algorithm is also applied in tandem with
the refinement. Then we apply coarsening primitives to
the lower 40% of the bar for a couple of steps. It demon-
strates the capability to selectively refine and coarsen
parts of any mesh as a function of time.

(a) One
refinement
phase

(b) Two
refinement
phases

(c) Two coars-
ening phases

Fig. 17 A mesh representing a bar with a narrow portion
in the middle refined for two steps and then the lower 40%
is coarsened for two steps. The simulation was run on 4 pro-
cessors.

Fig. 18 Longest edge bisection in 2-d

4.3.1 Refinement and Coarsening in Parallel We have
implemented a number of more elaborate refinement and
coarsening algorithms for use within ParFUM. Algo-
rithms for 2-d refinement, coarsening, repair and gra-
dation of triangle meshes have been fully integrated into
ParFUM using the new parallel mesh modification prim-
itives. The 3-d implementations are under development.
Our parallel implementations of refinement for 2-d and
3-d unstructured meshes are based on the longest edge
bisection algorithms first introduced by Rivara[26]. This
approach recursively applies the bisect edge operation
and propagates to satisfy the longest edge requirement.
For example, the algorithm is typically initiated on an el-
ement’s longest edge. The edge is bisected with the prim-
itive operation if it is the longest edge of the adjacent
neighbor element. If this does not hold, the longest edge
bisection is applied to the neighbor element first. This
process of propagation is illustrated in Figure 18. These
higher-level refinement and coarsening algorithms make
use of element quality criteria for decisions on which ele-
ments to adapt first, and can be applied to entire regions
of the mesh with user-specified criteria.

4.3.2 Data Transfer for Mesh Modification Operations
We have implemented a small module to perform basic
default solution transfer behavior. The module provides
for the linear interpolation of nodes during refinement,
coarsening and smoothing operations. It also handles ba-
sic copying of element data for bisected elements. The
module provides a clean interface by which the user can
provide their own desired data transfer operations for
use during local mesh modification.

ParFUM also has a parallel data transfer module for
performing data transfer for both node- and cell-centered
data over an entire mesh. This library makes use of colli-
sion detection (Section 4.4) and has been used to transfer
solution data during remeshing in rocket simulations. We
discuss this application of parallel data transfer further
in Section 5.2.

4.4 Parallel Collision Detection

ParFUM and Charm++ include a parallel collision de-
tection library [27,28] which provides an efficient means
for determining intersections of mesh pieces or other ob-
jects in a 3-d space. Each processor contributes a set of
bounding boxes to the library. After intersecting these
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Fig. 19 Collision detection library performance with a fixed
number of objects per processor.

sets of bounding boxes, the library returns to each pro-
cessor a list of its local boxes that overlap with boxes
from other processors. The user code can then appropri-
ately handle any collisions.

Collision detection is currently used in real world ap-
plications. An obvious use of collision detection is in
structural dynamics simulations. It is desired in such ap-
plications to determine if two physical objects, possibly
deformable or rigid bodies, collide. If the physical ob-
jects collide, then some contact physics will be applied
to keep the two objects from interpenetrating. A second
less obvious but equally important use of collision de-
tection is to transfer a solution from an old mesh to a
new mesh during a remeshing operation. When a mesh is
modified, data for a given element in the old mesh may
be used to compute the element data for any element in
the new mesh which overlaps the same physical space as
the element in the old mesh. The process of determining
whether two elements overlap is the same as detecting
if the two elements collide. The use of this library for
solution transfer is described in Section 5.2.

Collision detection can be time consuming and thus
an efficient parallel method is needed. Furthermore, a
single processor may not have enough memory to hold
all bounding boxes from all processors, so it may be im-
possible to use any serial collision detection library on a
large problem. The performance of the library depends
upon the problem, but takes O(n/p) (where n represents
mesh size in number of elements and p represents the
number of processors) time under reasonable assump-
tions for most problems. In a practical test, the library
exhibits speedups of 915 on 1,500 processors, a parallel
efficiency of 60% as displayed in Figure 19[28].

5 Applications of ParFUM

ParFUM and its extensions are used in a wide variety of
applications. We discuss four examples that use a num-
ber of the features of the basic framework and the ex-
tensions. ParFUM greatly simplified the parallelization

of all these applications and reduced the amount of effort
involved on behalf of the application programmer.

5.1 Spacetime Discontinuous Galerkin

The Spacetime Discontinuous Galerkin (SDG) method
[24,25] provides a powerful way to analyze phenomena
such as shock wave propagation in solids, evolution equa-
tions for state variables in inelastic constitutive models
and Hamilton-Jacobi level set models for interface kinet-
ics.

The SDG method uses discrete basis functions in
space and time over partitions of the spacetime domain.
The current implementation of the SDG method em-
ploys unstructured spacetime meshes satisfying a special
causality constraint. For such meshes, the SDG method
can be implemented as an advancing front solution tech-
nique which interleaves the generation of a patch of a
small number of elements and the solution procedure in
the patch. The space domain to be analyzed is repre-
sented by an unstructured mesh referred to as the space
mesh.

The SDG method has two main variants: adaptive
and non-adaptive. In the adaptive version, the space
mesh is refined or coarsened to obtain a more accurate
solution at points of interest without paying a high cost
all over the domain. The non-adaptive version does not
change the space mesh.

The SDG algorithm is very amenable to paralleliza-
tion since the computation-intensive solution procedure
for a patch is independent of all other patches. One of
the first attempts at parallelizing the SDG algorithm in-
volved a master-slave design. The space mesh was stored
on one master processor, which created the patches and
handed them over to other slave processors to solve.
However it was found that the master processor soon be-
came a communication and computational bottleneck. It
was realized that to scale to very large numbers of pro-
cessors, the space mesh would have to be distributed
among all the processors.

ParFUM seemed a suitable platform for this new im-
plementation of parallel SDG. Instead of rewriting the
whole application for the parallel version, it was decided
to provide an interface that could be used by the ex-
isting serial advancing front code. All issues of locking,
synchronization and data transfer are handled by this in-
terface. The interface is built on top of ParFUM. Ghost
layers described in Section 3.3 are used to provide a
uniform method for accessing nodes and elements on
local and remote chunks. Topological relationships be-
tween nodes and elements described in Section 4.1 are
used by the advancing front code. ParFUM’s capabil-
ity for parallel mesh adaptivity described in Section 4.3
is very useful for the adaptive version. In the adaptive
code chunks with refined elements would have more com-
putation than those with coarser elements. Section 2.4
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described how load balancing can be very useful in a
situation like this.

Some additional Charm++ code was developed to
provide functionality specific to this application such as
special-purpose locking. The implementation of the non-
adaptive version of the parallel SDG has been completed
whereas the adaptive version is under development. We
evaluated the non-adaptive version on an elastodynam-
ics code running on a 2D space mesh with only 140,000
elements. We tested it on the Turing3 cluster. Figure 20
shows the number of patches that are solved in a second
on varying number of processors. The number of patches
is a measure of the amount of work completed. We see
that even for a relatively small mesh it scales reasonably
well till 256 processors. The performance does suffer a
little for large numbers of processors. Load imbalance
among different chunks is the primary reason for it. We
intend to use the dynamic runtime load balancing fea-
tures of Charm++ in the future to improve the perfor-
mance of small meshes on large numbers of processors.

Fig. 20 Number of Patches solved per second for different
numbers of processors

5.2 Parallel Solution Transfer

As a simulation progresses, deformation can cause the
shape of a mesh to change, sometimes distorting ele-
ments severely. These low quality elements can result
in numerical instability and a loss of accuracy in physics
simulations. Smoothing and local mesh repair operations
can provide some improvement, but sometimes a mesh
is beyond repair. In this case, we may choose to cre-
ate an entirely new mesh from a model of the existing
mesh. This can be a complicated process because the old
mesh will have data that must be transferred to the new
mesh, but the elements and nodes of the old mesh will
not correspond in any way to those of the new mesh.

3 Turing is a cluster of 640 Apple Xserves connected by
Myrinet. Each node has dual 2 GHz G5 processors and 4 GB
of RAM.

Fig. 21 Extruding boundaries of old mesh (grey) to cover
new mesh (black)

In this section we describe Rocrem, a utility written
for the remeshing of rocket meshes. Rocrem uses a spe-
cial module of ParFUM to perform parallel data transfer
from a deformed mesh consisting of both surface and vol-
ume components to the new surface and volume meshes
via the following steps:

– The new mesh is read into ParFUM and partitioned
into k chunks or virtual processors on n processors

– Each VP reads a partition of the old volume mesh
and associated solution data

– The boundaries of the old mesh are extruded (see
Figure 21) so that curved surfaces of the new mesh
are guaranteed coverage

– Perform parallel data transfer:
– Use ParFUM’s collision detection library (dis-

cussed in Section 4.4) to match up old mesh to
new mesh

– Transfer data from old mesh components to over-
lapping components in the new mesh

– Perform linear interpolation of node data
– Perform volume-weighted average to transfer

data to elements

We have tested the parallel data transfer utility on
the Turing cluster with a small mesh containing ap-
proximately 200,000 elements and obtained the speedups
shown in Figure 22. Due to the small size of the rocket,
there are only sixteen partitions. Thus, the experiments
in the figure were always run with sixteen virtual pro-
cessors dispersed amongst the one through 16 physical
processors used for the experiments. The single proces-
sor time was 429 seconds for this mesh. A considerably
larger mesh of 3.8 million elements took 10 minutes for
solution transfer on 32 physical processors.

5.3 Crack Propagation Simulation

Fractography2d and Fractography3d are dynamic crack
propagation simulations that simulate pressure-driven
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Fig. 22 Speedup of parallel data transfer for a small rocket
mesh

crack propagation in structures. These codes were de-
veloped by the research group of Dr. Philippe Geubelle
in collaboration with the Parallel Programming Labora-
tory.

In this ParFUM application, the physical domain
is discretized into tetrahedral elements. In each itera-
tion, displacements are calculated on the nodes from
forces contributed by surrounding elements. Typically,
the number of elements is very large, and they are
grouped in a number of chunks distributed across pro-
cessors. Forces on boundary nodes across partitions are
communicated across chunks, combined and new dis-
placements calculated.

When an external force is applied to the material
under study, the initially elastic response of the material
may change to plastic as stress increases, resulting in
much more expensive computation in that region. This
in turn causes some of the mesh partitions to spend more
time on computation per timestep than other partitions,
resulting in load imbalance. ParFUM inherits a rich set
of load balancers from Charm++, the underlying run-
time system, and these proved extremely useful in this
situation [12].

To demonstrate the use of load balancing, we first ex-
amined a synthetic problem with an elastic bar. As force
is exerted from the front of the bar, the wave propagates
to the back of the bar and bounces back. During this
process, the elastic bar transforms into a plastic state
along the wave of the force. This simulation was run
on 32 processors of the SGI Altix at NCSA and used
160 mesh chunks. Without a load balancer, the duration
of the simulation was 207 seconds. Using a simple syn-
chronous greedy load balancing strategy, the duration of
execution comes down to 198 seconds. A more sophisti-
cated asynchronous load balancing further improved the
simulation time to 187 seconds.

Given these promising results, we used a larger crack
propagation simulation with 1000 AMPI processes on
100 processors of the Turing cluster. Without load bal-

(a) CPU utilization over time intervals

(b) CPU utilization across processors

Fig. 23 Performance of Fractography3d without load bal-
ancing. (a) Note the drop in CPU utilization at the transi-
tion to plasticity. (b) After the onset of plasticity, CPUs with
only elastic elements are underloaded.

ancing, the simulation took 24 hours, while using greedy
load balancing helped finish the simulation in 18.5 hours.
Figure 23(a) shows the CPU utilization graph versus
time. Around time interval 120, the CPU utilization has
already dropped to 42%. This is due to portions of the
domain that have transformed to the plastic state, caus-
ing the load imbalance. The imbalanced workload on the
processors can be seen in Figure 23(b). While some pro-
cessors have a CPU utilization as high as 90%, some are
lower than 50%. Figure 24(a) shows the same utilization
graph with load balancing. The load has been effectively
balanced and Figure 24(b) shows all processors having
almost equal work.

Another collaboration with Dr. Geubelle’s research
group has prompted the ongoing development of mesh
adaptivity in ParFUM. In solving a 1-d wave propa-
gation problem, we wish to capture information at the
shock front. One end of a 2-d bar is fixed and the other
end is pulled with constant velocity. This results in a
wave front that travels from pulled end. To best capture
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(a) CPU utilization vs. time

(b) CPU utilization vs. processor number

Fig. 24 Performance of Fractography3d with load balanc-
ing. The CPU utilization is uniformly higher

the shock-wave front a very fine mesh is desired. A coarse
mesh is less accurate. However, starting with the entire
mesh very refined is very slow, so adaptivity is used to
refine the mesh at the moving wave front and maintain
a coarsened mesh elsewhere. A normalized velocity gra-
dient is used as the criteria to identify the shock and
modify the mesh size accordingly.

Preliminary results indicate that the regionally re-
fined and coarsened mesh exhibits similar accuracy to
an initially fine mesh for modeling the shock-wave front.
Once parallel coarsening is complete, we are confident
that using adaptivity will result in better performance.
Since the region of refinement is constantly changing in
this simulation, it should be a challenging problem for
Charm++’s load balancing algorithms to tackle.

5.4 Dendritic Growth Simulation

An older but influential ParFUM application was de-
veloped as a collaboration with Jeong, Goldenfeld and
Dantzig[29]. This application simulates metal solidifi-

cation, with the goal of better understanding the de-
tails of dendrite growth, which strongly affect the micro-
structure of cast metals. The problem involves coupled
phase (liquid or solid), temperature, velocity and pres-
sure fields on an adaptive grid that tracks the moving
solid/fluid interface.

As simulation begins, the application code generates
a new mesh in serial using an octree decomposition. A
typical mesh consists of a half-million nodes and slightly
fewer elements. ParFUM then partitions this mesh and
begins parallel execution. At each timestep, a bidirec-
tional conjugate gradient solver iterates to find the cou-
pled solution data that solves the nonlinear governing
equations. This is implemented in parallel using a sim-
ple shared node ParFUM communication step during
each solver iteration. After a few iterations, the solve
converges and we can begin the next timestep. After
many timesteps, the solid/fluid interface has moved sig-
nificantly and the adaptive mesh is becoming out of date.
At this point, the application generates a new mesh to
better track the new solid/fluid interface and the entire
process repeats.

This ParFUM application was the first to use nonlin-
ear solvers. Because the solver outer loop is nested inside
the time loop, this application could not be written using
the older ParFUM-calls-user control style and required
the inverted (user calls ParFUM) control structure that
is now standard.

6 Related Work

The need for domain-specific frameworks in scientific
computing has been recognized for some time. However,
most of the existing frameworks are either meant for
structured grids or are not parallel. Two types of much
simpler frameworks do exist, non-parallel and struc-
tured grid. Simple data structures allow a serial meshing
framework to be built without the many complications
involved with a dynamic physics application in parallel.
Creating a structured grid framework involves a sub-
set of the problems that occur when implementing an
unstructured mesh framework. Currently, only a small
number of parallel frameworks for unstructured mesh-
based simulation exist. We discuss some of the existing
software for manipulating parallel unstructured meshes.

One framework for mesh-based simulations is
SIERRA[30] from Sandia National Laboratories. While
it is not yet publicly available, it promises a large feature
set. It is designed for large simulations on some of the
world’s largest parallel computers.

Simmetrix is a commercial software package which
targets the entire mesh-based simulation workflow. It
contains components for mesh generation and mesh
adaptivity, and supports a variety of input models. Sim-
metrix also includes a simulation design environment.
Simmetrix is currently adding parallel support to the



18 O. Lawlor, S. Chakravorty, T. Wilmarth, N. Choudhury, I. Dooley, G. Zheng, L. Kalé

software, so we do not evaluate how well it performs in
parallel. In comparison, ParFUM is designed for parallel
performance from the ground up.

Additional efforts in parallel mesh adaptivity are on-
going at RPI[31]. ParFUM uses similar refinement and
coarsening algorithms.

One MPI based framework for unstructured mesh
simulations is PYRAMID[32]. This framework devel-
oped by the Jet Propulsion Laboratory provides stan-
dard adaptive mesh refinement(AMR) operations in par-
allel, as well as partitioning via ParMetis.

The framework named Roccom is an “Object-
Oriented, Data-Centric Software Integration Framework
for Multiphysics Simulations” [33,34]. It unifies many
separate components or applications involved in a sin-
gle simulation. It primarily handles converting multi-
ple mesh formats, as well as providing an orchestration
mechanism to allow high level control over many com-
ponents and applications.

An academic product of the CFDLab at the Univer-
sity of Texas at Austin is a C++-based meshing frame-
work called libMesh. LibMesh works in parallel, making
use of MPI and utilizes existing numerical solver pack-
ages.

One library for finite element codes was specifically
designed for object oriented programming in C++. This
library, deal.II, supports some of its operations in par-
allel on an SMP computer via shared memory or on a
cluster via MPI. It supports some types of local grid
refinements, but is limited to using only hexahedral el-
ements. The limits on supported mesh types may be a
problem for application developers wanting to use the
library.

PREMA[35] is a runtime system specifically created
for AMR applications. Some of its dynamic runtime fea-
tures are similar to those that have been available in
Charm++ for some time.

ParFUM is a general purpose unstructured mesh
framework. ParFUM has always been built specifically
for high performance on large parallel machines, so it is
free from many problems that would arise when trying
to convert a serial framework to work in parallel. Be-
cause ParFUM is built on the robust and highly adaptive
Charm++ framework, ParFUM inherits a wide range of
adaptive features that other frameworks, especially those
built on MPI, will not achieve without major changes.

7 Conclusions and Future Research

We have developed a software infrastructure called Par-
FUM to simplify the creation and optimization of par-
allel applications that use unstructured meshes. The
framework automates tasks such as mesh partitioning,
maintenance of ghost layers and shared nodes, and com-
munication of user-selected attributes to them. Prelimi-
nary support for adaptivity is also included in the frame-

work, which is now ready to accommodate more so-
phisticated computational geometry algorithms for mesh
adaptivity. Since it is built using Charm++/AMPI,
ParFUM also supports automatic overlap of communi-
cation and computation, dynamic load balancing, and
checkpoint-restart. ParFUM also includes capabilities
for collision detection, parallel partitioning and specific
refinement and coarsening algorithms.

ParFUM has already proved useful in several appli-
cations such as space-time meshing, crack propagation
and rocket simulation. It has been shown to be scalable
to a large number of processors and to present a low
overhead.

We plan to extend the capabilities of ParFUM
with more sophisticated support for adaptivity, dynamic
repartitioning via coalescing and splitting existing par-
titions, and so on. We also are working on grid-capable
versions with load balancing strategies which allow an
application to spread across multiple clusters [2]. We
hope that more application scientists and engineers will
use the framework and provide us with feedback on how
to further enhance its usefulness and improve program-
mer productivity while attaining high parallel perfor-
mance.
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