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Abstract. It is argued that scheduling is an important determinant of
performance for many parallel symbolic computations, in addition to
the issues of dynamic load balancing and grain size control. We propose
associating unbounded levels of priorities with tasks and messages as
the mechanism of choice for specifying scheduling strategies. We demon-
strate how priorities can be used in parallelizing computations in dif-
ferent search domains, and show how priorities can be implemented ef-
fectively in parallel systems. Priorities have been implemented in the
Charm portable parallel programming system. Performance results on
shared-memory machines with tens of processors and nonshared-memory
machines with hundreds of processors are given. Open problems for pri-
oritization in specific domains are given, which will constitute fertile area
for future research in this field.

1 Introduction

The field of Artificial Intelligence — in at least one of its interpretations —
sets itself an ambitious goal: that of building computational systems that are
capable of intelligent behavior that is on par with the best humans, and better.
Building such systems will require a clear understanding of the structure and
organization of intelligent systems, and their specific abilities, such as inductive
learning, inference, planning and so on. Much research has been carried out
(and is going on) on this front. As this work progresses, it is also becoming clear
that a significantly large computational power will be required to integrate the
strategies derived from the research into a system that can attain a desirable
level of performance. Fortunately, recent advances in computer architecture have
enabled construction of massively parallel machines with unprecedented levels
of performance. Viewed in this light, it seems inevitable that parallel processing
technology will be used to build AI systems of the future.

Many research issues must be dealt with before this technology can be used
successfully in AT applications. One such issue — the one that we will deal with
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in this paper — involves scheduling. In a parallel AI computation, there will
be many computational subtasks that can be performed in parallel at a given
moment. As the number of such tasks can be expected to vastly outnumber
the number of processors, one must decide which of the tasks to execute next on
which processor. These scheduling decisions have a very significant impact on the
performance of many AI applications. This will also be illustrated with examples
later in this paper. What mechanism should be used to specify a scheduling
strategy? What scheduling strategies are useful in specific contexts? How should
the chosen mechanism be implemented on parallel machines?

We believe that an appropriate framework for such applications is one in
which subtasks are modeled as medium grained processes that are capable of
creating new processes dynamically, and which communicate with each other
mainly via messages. In such a framework, we argue that associating priorities
with messages and processes is a good mechanism for implementing scheduling
strategies. Section 2 includes descriptions of some regimes for which effective pri-
oritization strategies are not yet known, and should be areas of active research.
In Section 3, we describe Charm, a portable parallel programming system that
provides such a framework, and supports priorities. This system was used to
carry out the experiments described in this paper. In Section 4, we examine sev-
eral search regimes (e.g. state-space search and game tree search) and describe
how specific priority-based scheduling strategies can be used to effectively par-
allelize them. Section 5 describes techniques for supporting priorities in parallel
systems.

2 Alternate Scheduling Mechanisms

Although the scope of Al strategies in general is quite broad, we will focus on a
subset that can be characterized as “tree structured computations” or “search
computations”. This by itself is quite a large class, as illustrated by the list
of specific subclasses discussed in Section 4. Such computations can be viewed
as a process of developing a tree (starting with a single-node tree, usually), by
adding nodes to it, pruning subtrees, and propagating information up and down
the tree.

One method for parallelizing such computations is to think of the tree as
a shared data structure on which the processors “walk”. Such an approach is
often used on shared-memory machines with only a few processors. Scheduling
strategies can then be expressed as tree traversals. For example, a strategy com-
ponent might be: “if you are at a leaf node, traverse upward in the tree upto the
first node that has an unexplored child”. Although this mechanism is sometimes
intuitive, it incurs substantial performance penalties on large machines (particu-
larly the ones with nonshared-memory) where pointers between nodes in the tree
may often cross processor boundaries. Also, implementation of such strategies
is complicated by the intricacies of sharing memory — to avoid deadlocks and
race conditions, for example.

A process-based parallelization of such computations is conceptually simple.



Each node of the tree is implemented as a process. New nodes are added to the
tree by creating new processes, and propagation of information up and down the
tree is implemented via messages.

As the number of nodes in the tree at any moment during its computations
may be (and often is) much larger than the number of processors, the underlying
system must support multiple processes per processor. In addition, a parallel
implementation of such a process-model must deal with the issues of (1) grain
size control, (2) dynamic load balancing and (3) scheduling.

Grain size control deals with the problem of amortizing the overhead of pro-
cess creation and message-passing, typically by combining many processes into
a single process. Dynamic load balancing techniques are needed to ensure that
processors are effectively utilized, to complete the execution of the overall com-
putation as fast as possible.

Scheduling, in contrast, deals with the question of which messages and pro-
cesses, among the many available ones, to execute next. It is particularly impor-
tant for speculatively parallel computations, where some of the tasks that can be
carried out in parallel may turn out to be futile or unnecessary [29]. Here, the
order in which tasks are executed has an impact on the total amount of compu-
tations performed — by affecting the number of messages/processes that must
be processed before the problem is solved. Speculative computations in parallel
functional languages have also been investigated in [1].

What mechanisms can be used to specify and implement scheduling strate-
gies?

1. Assign fractions: In this strategy, each process is given a promise of a certain
fraction of the overall CPU-time available in the system. When a process
forks sub-processes, it assigns to them fractions of the fraction that was
allocated to it. Such a strategy can be implemented in many different ways:
for example, a process given 10% of the cpu-time may be given 10% of the
processors in the system, or be allowed to run on all the processors in the
system for 10% of the time. Many other shades in between are also possible.

2. Assign times: Each process is give a certain fixed cpu-time. It may assign
some of its time to its child processes as above. This mechanism is different
from the above in that the quanta of cpu-time assigned is a consumable
resource — a process is terminated when the quanta assigned to it finishes.

3. Assign priorities to processes and messages. The parallel system must then
try to adhere to the priorities to the extent possible.

We will explore the last option, although the first two have their merits in
specific situations. In this paper, we will describe (a) how these mechanisms can
be used effectively in different search domains, and (b) how priorities can be
implemented effectively in parallel systems. First, we will introduce Charm, a
portable parallel programming system which supports dynamic creation of small
grained processes, and which was used in the implementations described in the
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3 Charm: The Parallel Programming Framework

Developing parallel application programs is currently difficult due to (a) the
diversity of parallel architectural platforms, (b) the inherent difficulty of parallel
programming and (c) the difficulty of reusing parallel software. Due to the
diversity, programs written for one parallel machine don’t usually run on another
machine by a different vendor.

Charm [7] is a parallel programming system that we have developed to ad-
dress this problem. Charm provides portability and supports features that sim-
plify the task of parallel programming. Programs developed with Charm run
efficiently on different shared-memory and nonshared-memory machines without
change. It currently runs on Intel iPSC/860, NCUBE, CM-5, Sequent Symme-
try, Multimax, Alliant FX/8, networks of workstations, and will be ported to
machines including the Intel Paragon in near future.

Charm is one of the first systems to support an asynchronous, message driven,
execution model [7]. This allows for maximum overlap between computation and
communication and facilitates modular program organization. Recognizing that
parallel programs involve distinct modes of sharing information, it supports six
modes in which information may be shared between processes. These modes are
implemented differently on different machines for efficiency. The system supports
(static and) dynamic load balancing and prioritization. Charm was designed
to support reuse of parallel software modules and includes specific features for
promoting it.

From the point of view of this paper, the important features of Charm are
that it supports dynamic creation of processes (called chares) and allows multiple
processes per processor. A process is activated when a message for it is picked up
for execution (or when an initial message containing the “seed” for a new process
is picked up for execution). The process is allowed to complete the processing
of this message before the system picks up another message — for the same or
different process — for execution.

4 Applying Prioritization

In the following subsections, we will describe how we were able to obtain effective
speedups by using (specific) prioritization schemes in various search domains.
In some of the domains, there still remain open problems signifying the need
for better prioritization strategies. The domains discussed include: state-space
search, iterative deepening, divide-and-conquer, best-first and branch-and-bound
search, AND-OR trees and problem reduction, game trees, and bi-directional
search.

4.1 State Space Search

In a state-space search problem, one is given a starting state, a set of operators
that can transform one state to another, and a desired state. The task is to find



a sequence of operations that transform the start state to the desired goal state.
The desired state may be described by a set of properties it must satisfy, and
there may be many such states in a given state-space. One can imagine a tree
with the starting state as its root, and for any state S in the tree, all the children
states that can be obtained by one application of any rule to S. This tree is called
the search tree, and is usually implicit, in that it is not explicitly represented in
the computer program or data. A state-space search program can be thought of
as traversing this tree. A depth-first search strategy is usually implemented using
a stack of states in sequential programs. The search begins with the starting state
on the stack. From then on a node from the top of the stack is picked up and
examined. If it is a goal state, the solution may be recorded. If it is a dead-end
state, it can be discarded. Otherwise all possible operators are applied to the
state to produce the set of its children states. These are then pushed onto the
stack, possibly using some local value-ordering heuristic so that the child most
likely to lead to a solution is kept at the top of the stack.

Parallelizing depth-first search may therefore seem simple: instead of search-
ing successor states one after the other, search them in parallel. As the search
tree grows exponentially in the depth of the tree, one may also expect to gener-
ate a large degree of parallelism. Indeed, if one is looking for all solutions, this is
as simple as that, except for the important problems of load balancing and grain
size control. Earlier, we worked on the all-solution problem using the Chare-
Kernel machine independent parallel programming system [12], which provides
dynamic load balancing among other facilities. With this, we were able to obtain
very good speedups for many depth-first search problems. Other work on dy-
namic load balancing for this problem includes that of Kumar and Rao [28, 18],
who describe an idle-processor initiated load-balancing scheme which splits (i.e.
divides the nodes on) the stack of the donor processors, and [4] which relies on
a hierarchical load balancing scheme.

When one is interested in any one solution, such parallelization techniques
lead to difficulties. If we search two successors of a state (assume there are only
two for simplicity), the solution may lie in the sub-tree of either node. If it lies
in the sub-tree of the first node, the work in the second sub-tree will be wasted.
Exploring the two subtrees in parallel is thus speculative — we may not need
both those sub-computations. This fact, and the resultant speedup anomalies
were noted in a branch-and-bound search which is closely related to depth-first
search, by Lai and Sahni [19].

One may get deceleration anomalies where adding a processor may actually
slow down the search process in finding a solution. This may happen because
the added processor may create some “red herring” work that other processors
end up wasting their time on. In extreme cases, this may lead to detrimental
anomalies, where p processors perform slower than 1 processor performing the
search. It is also possible to get acceleration anomalies: a speedup of more than p
with p processors. This can happen because the added processor picked a part of
the search tree that happened to contain the solution. Kumar et. al. noted this
in the context of parallel depth-first search. They reported a speedup varying



between 2.9 to 16 with 9 processors for a 15-puzzle problem [28].

We started with the dual objectives of (1) ensuring that speedups are con-
sistent — i.e. do not vary from one execution to another and (2) ensuring that
the speedups increase monotonically with the number of processors, preferably
being as close to the number of processors as possible. With that objective, it
is clear that all the work that is done by the sequential program is “manda-
tory” whereas all the other nodes not explored by the sequential algorithm are
“wastage”.

Our scheme, described in [13, 31] is based on bit-vector priorities, and builds
upon an idea in [20]. Each node in the search tree is assigned a priority. Priority
bit-vectors can be of arbitrary length, and their ordering is lexicographic —
the lexicographically smaller bit-vector indicates higher priority. The priority of
the root is a bit-vector of length 0. If the priority of a node is X, and it has
k children, then the priority of the #’th child is X appended by the [logk]-bit
binary representation of ¢. Thus, if a node with priority 01101 has three children,
their priorities will be 0110100, 0110101, and 0110110, from left-to-right. It can
be shown that lexicographic ordering of these priorities corresponds to left-to-
right ordering of the nodes in the tree. To be sure, there is a loss of information
in the bit-vector representation: A node with priority 0110110 may be at level
7 of a binary tree, or level 3, with the top-level branching factor of 2, and the
next two (grand-parent and parent of this node) with a branching factors of
7 and 5 respectively, among many other possibilities. Fortunately, this loss of
information does not destroy the left-to-right ordering in a specific tree, and
saves much in storage and comparison costs over a scheme that assigns a fixed
number of bits to each level. Figure 1 shows an example of how such priorities
are assigned to nodes of a search tree.

X00 X01 X10

X0100 X0101 X0110 X100 X101

Fig. 1. Illustration of the assignment of bit-vector priorities to nodes. The priority of
the topmost node is assumed to be X.



The complete scheme, described in [13], involves a few additional subtle
points of strategy. In particular, a technique called delayed-release is used to
further reduce the wasted work, and reduce the memory requirement to roughly
a sum of D + P where D is the depth of the tree, and P is the total number
of processors. Most other parallel schemes for depth-first search require storage
proportional to roughly D x P. Delayed-release works as follows: A process re-
sponsible for expanding a node would normally fire a new process for each child
node. Instead, it now simply stores the nodes in a list, and goes on to expand the
leftmost child. It continues this process until it reaches a node (say N) deemed
to be small enough (by the domain specific grain size control heuristic) to search
sequentially. At this point, it fires (releases) processes for each of the nodes ac-

cumulated in the list, and then goes on to carry out the sequential search under
the node N.

Fig. 2. The prioritization strategy leads to a characteristic broom-stick sweep of the
search space.

The scheduling induced by this strategy sweeps the search tree from left-to-
right. Moreover, at any moment, the set of “active” nodes — i.e. all nodes being
expanded by the processors and their ancestors — form a characteristic shape
resembling a broom with a long stick, as shown in Figure 2.

This strategy was implemented and tested with various state-space search
problems on shared-memory and small nonshared-memory machines. A sample
of the performance data, taken from [29], is shown in Table 1.

This strategy was also applied successfully in obtaining consistent speedups
to one solution in test pattern generation for sequential circuits by Ramkumar
and Banerjee [27]. In test generation for sequential circuits, we once again have a
state space where the nodes in the search space represent assignments to primary
inputs or inputs to flip-flops (called pseudo-inputs) in the circuit being tested.
Typically, in the one processor case, heuristics are used to determine the order in
which assignments are made to the inputs. These heuristics were supplemented
by our prioritizing scheme for parallel execution. For any given heuristic, our



Table 1. Performance of the prioritization strategy on Sequent Symmetry. All times
are in Seconds.

Processors 1 2 4 8 12 16 18
126-Queens 202.0 | 100.5 | 51.0 | 26.3 | 18.1 | 14.0 | 12.7
8x8 Knight’s Tour | 113.0 52.9 26.5 | 13.1 8.9 6.6 6.1

scheme was able to consistently speedup the execution time as the number of
processors were increased.

The test generator is initially provided with a list of faults in a given circuit for
which test vectors need to be detected. A test vector sequence is a solution for a
fault if it can successfully propagate the fault to a primary output in the circuit.
Whenever a sequence of test vectors is found to detect a given fault, a fault
simulator is invoked to determine whether this test vector serves as a solution
for other faults in the fault list. All such covered faults are dropped from the
fault list. Each fault is assigned a time limit which bounds the computation time
that can be devoted to finding a solution for a single fault. If no solution can
be found within the time limit, the test generator has failed to find a solution
that may exist in the search space. If the entire search space has been explored
unsuccessfully, the fault is called a redundant fault. The efficiency metric in Table
2 reports the percentage of faults which are redundant or for which test vectors
have been detected.

In Table 2, we quote some of the results presented in [27] for an 8-processor
Intel 1860 hypercube. The test generator, called ProperTEST, was developed
using the Charm system and, as a result, ran unchanged on a variety of machines,
including a network of Sun Sparc I workstations, a Sequent Symmetry, an Intel
1860 hypercube and an Encore Multimax.

In column 1 of Table 2, the benchmark circuits used are identified. In column
2, the number of PEs used in the experiment is listed. In columns 3 and 4, the
time spent in test generation and fault simulation phases of the computation is
reported. Finally, in column 5, the efficiency of the test generator is presented.
The efficiency metric reports the quality of the solution obtained. It is important
that speedup is not obtained at the cost of poor fault coverage by the test
generator. As can be seen from the results, the use of priorities was instrumental
in obtaining consistent speedups without significant loss in quality.

There is an interesting postscript to the research on state-space search. As we
began experimenting with specific applications, such as the N-queens problem,
we attempted to improve the heuristics used in the search, to ensure that the
speedups were measured against the “best possible” sequential algorithm. For
the N-queens problem, this led to such a good heuristics that it almost always
led to a first solution, without much search [11]. This was a true heuristic, as
distinct from the well-known closed form solutions to the N-queens problem, in
that it can be used continually to generate multiple solutions beyond the first



Table 2. Execution times (in seconds) of the ProperTEST test pattern generator for
sequential circuits on selected ISCAS89 sequential benchmark circuits on the Intel i860
hypercube. All reported execution times are in seconds.

Intel i860 hypercube (Message Passing)
|| Circuit || #PEs || Test gen. time | Fault sim. time || Efficiency ||

s386 1 184.4 2.7 100
8 28.8 1.3 100
s713 1 27.0 3.7 98.8
8 6.6 1.0 98.8
sb378 1 6016.5 184.8 75.3
8 901.7 38.6 72.7

one. (The 126 queens results quoted in Table 1 is prior to the use of this newly
discovered heuristic). A similar experience was obtained for the 3-satisfiability
problem [3]. As long as a solution existed, the heuristic we developed was able
to find it without much search! We plan to experiment with other heuristics for
NP-complete problems.

4.2 TIterative Deepening

Sometimes, one is interested in an optimal solution to a search problem. If an
admissible heuristic is available [22] one can use the A* algorithm, which en-
sures that the first solution found is the optimal one. However, A* requires large
memory space on the average, and degenerates to breadth-first search in the
worst case. An iterative deepening technique can be used in such a situation:
due to admissibility property, we know that the cost of the solution cannot be
less than the heuristic value of the root. So, we can conduct a depth-first search,
but restrict ourselves to not search below nodes that exceed the bound given by
the heuristic value of the root. If no solution is found, we can search for the next
possible bound. This can be obtained by keeping track of the heuristic values of
the unexplored children (of the explored nodes), and picking the minimum from
these. Alternatively, in some problems, the increasing sequence of bounds is clear
by the nature of the problem definition itself. For example, in the well-known
fifteen puzzle problem, if the cost measure is the number of steps required to
produce the goal state, it can be shown that the bound must increase by two
in every successive iteration. This process is continued until a solution is found.
This algorithm was defined by Korf [17], and is called IDA*, for Iterative Deep-
ening A*. As in A¥, the first solution found is an optimal solution in IDA* too.
Each successive iteration duplicates all the work done by the previous iteration.
However, as the tree-size increases exponentially in the depth of the tree, the
cost of the last iteration dominates, and this duplication is not too expensive.
Even with a binary branching factor, the duplication cost is at most 100%, which
is tolerable considering the significant memory savings.



As each iteration of IDA* is a depth-first search, it can be parallelized us-
ing the techniques described above. Kumar et. al. in [28] were the first to
demonstrate parallel schemes for this problem. Their results did exhibit speedup
anomalies for single solutions, and they reported speedups to all solutions (as
their primary interest was to demonstrate the efficacy of their load balancing
scheme). It is true that all the optimal solutions exist in the last level of the tree
(and therefore all the previous layers are completely explored irrespective of the
order in which the nodes are explored.) However, the last iteration — complete
exploration of the last level — is typically larger than all the previous ones com-
bined. The order in which nodes are explored in the last iteration affects when
the first solution is found, and thus the notion of speculativeness prevails in this
context too.

Parallelism

AN

Time

Fig. 3. The nature of inherent parallelism in IDA*.

Our prioritization techniques described in Section 4.1 were successful at
obtaining consistent and monotonic speedups for this problem. However, the
speedup with these techniques alone are not as high as they could be, although
for each iteration, we obtained close to the best possible speedups. The difficulty
is that the parallelism in this problem increases and decreases in waves with each
iteration, as shown in Figure 3. At the beginning of each iteration the parallelism
is low. It increases quickly to occupy many processors, and then trails off toward
the end of the iteration.

If we knew that n+1’th iteration was necessary, we could start it concurrently
with n’th iteration, so that by the time n’th iteration finishes, the next iteration
is already running full-swing, thereby keeping the processors busy. Even with this
knowledge, we would have to make sure that the next iteration did not generate
work that kept processors from working on the previous iteration. However,
seen from this perspective, this problem seems amenable to prioritization. Just



assign higher priority to earlier iterations, and allow multiple iterations to run
concurrently. This scheme is described in [32].

The fact that we do not know which iterations are necessary can be handled
as follows: We start K iterations in parallel. Whenever any one of them finishes
without reporting a solution, we start the next iteration. Whenever a solution
is reported from the 7’th iteration, we (a) do not start any new iterations, (b)
terminate all the iterations larger than ¢, and (c) wait for all iterations smaller
than 7 to finish, as they may have a better solution. This scheme might seem
wasteful, because we are generating a new class of speculative, and potentially
wasteful, computations (viz. the iterations beyond the optimal-solution depth).
However, with proper use of priorities, our experiments suggest that work on
subsequent iterations is done only if no work on the current iteration is available.

To assign higher priorities to earlier iterations, we assign a non-empty bit-
vector as the priority of the root node in every iteration, as opposed to an empty
one in the baseline algorithm. This priority must be so chosen that every descen-
dant of the root of an iteration has lexicographically smaller bit-vector compared
to any node in a subsequent iteration. If the maximum number of iterations is
known, this can be accomplished easily by assigning a binary representation of
the iteration number as the priority of its root. However, in general, this num-
ber is not known. A binary coding scheme we developed solves this problem
neatly. The first iteration is given a representation: “0”, the second and third
one “010” and “011” respectively, the 4’th through 7’th are assigned “00100”,
“00101”, “00110”, and “00111”, and so on. It can be verified that this repre-
sentation satisfies the required property — any extension of 011, for example, is
lexicographically smaller than all extensions of 00100.

With this scheme we were able to “soak up” the computing resources during
the previously idle periods without increasing the wastage, and produce almost
perfect speedups even for small-sized problems. The improvement obtained can
be seen in Table 3, taken from the data in [29]. The slight superlinearity seen in
the data is not surprising, and it occurs because the optimal solution is reported
before all the nodes to the left of the solution node are explored — other proces-
sors may still be working on such nodes. See [13, 32] for details of this scheme,
and additional performance data.

Table 3. Performance of IDA* solving a 15-puzzle instance on Sequent Symmetry. The
numbers shown are speedups. The sequential execution time for this instance was 116
seconds.

Processors
Basic Parallel IDA*

2 Concurrent Iterations

3.8 | 6.7 | 89 | 10.8 | 11.7
4.0 | 7.9 | 11.5 | 15.0 | 16.5
4.0 | 8.0 | 12.0 | 16.2 | 18.3

I

3 Concurrent Iterations




4.3 Divide And Conquer: Memory Usage

A divide-and-conquer is a deterministic computation, without any speculative
parallelism. A problem is divided into two or more subproblems. This subdivi-
sion continues recursively until subproblems are “small enough” to be directly
solved. Solutions to the subproblems are “combined” to form a solution to their
parent problem. The computation can thus be seen as the process of growing the
tree downwards, and then passing information up the tree, combining it at the
intermediate nodes, until the root node forms the final solution. In a process-
based parallel formulation, each node of the tree is made into a process, with
the last few levels of tree being combined into one process for the sake of grain
size control (this is just one of many possible methods for grain size control that
can be used in tree-structured computations).

Without any speculative parallelism, it may seem to be futile to attach prior-
ities to processes. However, significant savings in memory usage can be obtained
by using the left-to-right priorities (as used in state-space search). Because of
the broom-stick sweep, the memory used with P processors is proportional to
D + P, for a D-deep tree, instead of O(D * P), which would have been the
memory usage without the use of priorities. The O(D % P) could be obtained
by using a LIFO strategy for dealing with new processes and messages. Further
reduction in memory usage can be obtained by giving a higher priority to mes-
sages carrying solutions to subproblems, in relation to the messages carrying
subproblems to be solved. While the former may result in reduction in memory
usage by finishing the parent subproblem, the latter often results in creation of
more processes. This reduction can be effected by attaching the prefix “0” to
the priority of all solution messages, and “1” to that of the new processes. Note
that if 1X was the priority attached to a message carrying a subproblem, then
the message carrying a solution to it should bear priority “0X”.

4.4 Branch-and-bound and Best-First Search

The Traveling Salesperson Problem (TSP) is a typical example of an optimiza-
tion problem solved using branch-and-bound techniques. In this problem the
salesperson must visit n cities, returning to the starting point, and is required
to minimize the total cost of the trip. Every pair of cities ¢ and j has a cost Cj;
associated with it (if s = j, then Cj; is assumed to be of infinite cost).

In the branch-and-bound computation one starts with an initial partial so-
lution, and an infinite upper bound. New partial solutions are generated by
branching out from the current partial solution. Each partial solution comprises
a set of edges (pairs of cities) that have been included in the circuit, and a set
of edges that have been excluded from the circuit. For every partial solution,
a lower bound on the cost of any solution that can be found by extending the
partial solution is computed. A partial solution is discarded (pruned) if its lower
bound is larger than the current upper bound. Two (or more) new partial solu-
tions are obtained from the current partial solution by including and excluding



the “best” edge (determined using some selection criterion) not in the partial
solution. The upper bound is updated whenever a solution is reached.

Note that the left-to-right tree-traversal strategy that we used for state-space
search is inappropriate for this problem. To maximize pruning, we would like to
process nodes with lowest lower-bounds first. This leads to a form of best-first
search. To parallelize this computation with a prioritized scheduling mechanism,
we associate the lower bound of a node with the priority of the correspond-
ing process, with lower values signifying higher priorities. (The parallelization
scheme also needs an ability to propagate the cost of the best-known solution
at the current time, so that it is accessible from all processors. The monotonic
variable abstraction supported in Charm provides this capability).

This prioritization scheme was implemented and tested on many versions of
the Traveling Salesperson Problem. The major challenge for the priority balanc-
ing strategy was to ensure that the number of nodes expanded in a parallel search
is not much more than those expanded in sequential search. This implies trying
to implement a good degree of adherence to priorities, while still preserving good
load balance, and avoiding any bottlenecks. With appropriate choice of priority
balancing strategies (described in section 5), we were able to demonstrate good
speedups even on 512 processors of an NCUBE machine, as shown in Table 4.

Table 4. The figure shows the execution times and the number of nodes generated for
executions of a 60 city asymmetric TSP on the NCUBE/2 with upto 512 processors
using the tokens strategy to balance load. In this case the cluster size is 16 processors.

Processors 1 (estimated) 64 128 256 512

Time 19,366 302.6 151.1 86.2 42.1

Estimated Speedup 1 64 128 225 460
Number of Nodes expanded - 85,165 | 84,030 | 93,816 | 85,420

It should be noted that the lower bounding methods we used are simple,
almost naive, methods. Much more sophisticated methods exist today which
would cut down the number of nodes generated for this problem by many orders
of magnitude. The simple algorithm was sufficient for our purpose here, as we
simply wanted to demonstrate how speculative parallelism can be controlled in
this context. With better algorithms, one can use our strategies and attempt to
solve much larger problems.

As even larger branch-and-bound problems are attempted, we anticipate
memory overflow problems. This is because, in the worst case, best-first search
can be as bad as breadth-first search for memory usage, and never as good as the
depth-first search. As the spread between memory requirements of depth-first
and breadth-first varies from a linear to exponential function of the depth of
the tree, one can expect memory overflows on many problem instances. Again, a



priority based scheme can be used to formulate a solution to this problem. The
memory overflows can be avoided by using a prioritization strategy that adapts
to the current memory usage. When memory utilization is very high (say more
than 90%), one may switch to a depth-first strategy for all new nodes being
generated. This can be accomplished with priorities alone as follows: let U be
the maximum value the priority make take in the normal strategy, and let D
be the maximum depth of the tree. Instead of using a lower-bound z as the
priority of a node, we will use D + z. When we detect that the memory usage is
high, we assign priorities differently. Each node at depth d is assigned a priority
D — d. Thus, the priority of a node generated after the memory threshold has
been reached is always higher (i.e. numerically smaller) than any node generated
earlier, as D — d < D + z. This will have the effect of finishing off the nodes
from the “original” priority queue by completing the depth-first search under
each node. Once this strategy reduces memory usage below the preset threshold,
we can switch back to assigning the lower-bound based priorities as above (i.e.
D+x). The system will thus finish an adequate number of nodes created prior
to this point in a depth-first (LIFO) fashion, but then revert back to a best-first
pattern. Controlled use of memory has also been used in [35] by combining good
features of A* and IDA¥*.

Another reason for higher memory usage in a prioritized strategy is the po-
tentially large number of low priority nodes that may “rot” in the queue. These
nodes represent work that is pruned due to some solution found earlier. How-
ever, until they are examined, they won’t be discarded; and as we are proceeding
in priority order, they will not be examined for a long time. A solution to this
problem is to provide a “flush” primitive in the system that would delete all
messages below a certain priority level. This can be used whenever a new better
solution is found, to clean up the queue. An alternate solution is to switch to
a “garbage-collection” mode globally (across all processors) on some trigger —
such as high memory utilization on some processor, or as a periodic cleanup
phase. Under this mode, all processes simply examine the lower bound of the
node they are meant to expand, and discard it (if its lower bound is larger than
the current upper bound, as usual), or else simply store it in another repository
process. When all the nodes have been cleared in this fashion (and this condition
can be detected by the quiescence detection algorithm in Charm), the repository
processes on all the processors are awakened, and they create new processes for
all the non-garbage nodes.

4.5 Logic Programming: AND-OR and REDUCE-OR trees

A Pure Logic Program is a collection of predicate definitions. Each predicate is
defined by possibly multiple clauses. Each clause is of the form: H : — Ly, La... Ly,
where the L;’s are called the body literals. (A literal is a predicate symbol,
followed by a parenthesized list of terms, where a term may either be a constant
or a variable, or a function symbol followed by a parenthesized list of terms). A
clause with no body literals is called a fact.



A computation begins with a query, which is a sequence of literals. A partic-
ular literal can be solved by using any of the available clauses whose heads unify
with the goal literal. In the problem-solving interpretation of a Logic Program,
each literal corresponds to a (sub) problem, and different clauses for a predicate
correspond to alternate methods for solving the problem. Also, it is possible to
have multiple solutions for a given problem. So, again, when one is interested
in only one solution, the problem of speculative parallelism arises. This is fur-
ther complicated by the presence of AND parallelism, which is the parallelism
between multiple literals of a clause (or, in problem-solving terminology: that
between multiple subgoals of a particular method).

REDUCE/OR Process Model: Our work on speculative computations in
Parallel Logic Programming was conducted in the context of the REDUCE/OR
process model (ROPM), proposed and developed in [9, 14, 8]. The past and
ongoing work related to this model in our group includes development of a
binding environment [15] and a compiler [26, 25]. The REDUCE/OR process
model exploits AND as well as OR parallelism from Logic programs, and handles
the interactions of AND and OR parallelism without losing parallelism. It is also
designed so that it can use both shared and nonshared memory machines. The
compiled system executes on the NCUBEs and Intel’s hypercubes, as well as on
many shared-memory machines such as: Sequent Symmetry, Encore Multimax,
Alliant FX/8, etc. Thus, when we started working on first-solution speedups in
Logic Programs (i.e. with speculative computations), it was clear to us that we
must work within the framework of ROP M to retain its advantages. This added
one more constraint on the possible schemes. Speculative work in OR-parallel
Prolog has also been investigated by Hausman in [6].

We first worked on simply improving the first solution speedups in ROPM
compared with the then prevalent scheduling scheme, which was a LIFO scheme,
with each processor having its own stack. This is described below. The work
described in Section 4.1 on pure state-space search came later, and encouraged
by those results we set a new objective of consistent and monotonic speedups.
The resultant work is described subsequently.

Speedups for a First Solution: The REDUCE/OR process model is based on
the REDUCE/OR tree [10], which is an alternative to the traditional AND/OR
tree. It overcomes the limitations of AND/OR trees from the point of view of
parallel execution. The detailed description of the process model can be found
in [9]. What concerns us here is the process structure generated by ROPM. Each
invocation of a clause corresponds to a process, called a REDUCE process (with
the exception of clauses and predicates explicitly marked sequential: these are
used for granularity control). The REDUCE process uses a dependence graph
representation of the literals in the clause. It starts with a tuple of initial bindings
to its variables, and fires OR processes for each literal that can be fired without
waiting for any other literal, according to the graph. Each OR process may
send multiple solutions. Each solution results in a new binding tuple, which may



trigger firing of other OR processes for dependent literals. For example, consider
a clause with four literals, with the dependence graph represented by:

A(I,T) : —¢(,X) —» (u(X,Y)//vX,Z)) - w(,Z,T).

When an instance of this clause is activated, an initial binding tuple with
variable I bound to some value, and other variables unbound, is created. One OR
process for solving p with this initial binding of I is then fired. For every value of
X returned by ¢, one u and one v process is fired immediately. Thus, there may
be multiple u (and v) processes active at one time. Each value of ¥ returned by u
is combined with compatible values of Z (i.e. those that share the same X value)
returned by the corresponding v process, and for each consistent combination, a
w process instance is fired. Each OR process, given an instantiated literal, simply
fires off REDUCE processes for each clause that unifies with the literal, and
instructs them to send responses directly to the OR-process’s parent REDUCE
process. Thus, the process tree looks similar to a proof tree, rather than to an OR
tree (or SLD tree). This fact is important in understanding (as well as designing)
the scheme we proposed.

In the compiled implementation of ROPM, the requests for firing processes
were stored and serviced in LIFO fashion. On (small) shared-memory systems,
this was done using a central shared stack, whereas on nonshared-memory ma-
chines, a separate stack was used on each processor, and a dynamic load bal-
ancing scheme moved such requests from one processor’s stack to another’s.
Although this strategy resulted in good use of memory space, it had one draw-
back (if one is interested in just one solution): all the solutions tended to appear
in a burst toward the end of the computation, for problems that involve AND
as well as OR parallelism. It is easy to see why, with a different and a simpler,
example. Suppose there is a clause with two AND-parallel (i.e. independent) lit-
erals, p and q. When the clause fires, it pushes p and ¢ process-creation requests
on the stack. Assume p is on top, without loss of generality. Literal p may have
a large sub-tree, with many solutions, and so all the processors in the system
may be busy working on p. This will result in production of all solutions to p
before any solutions to g. (Of course, toward the end a few processors will be
working on g while others are finishing up p). However, from the point of view
of reporting the first solution faster, the system should focus attention on ¢ as
soon as one solution from p is obtained. In addition, if there are two alternative
computation-intensive clauses for p, we should have the system concentrate its
resources on one clause (and its subtree) rather than dividing them arbitrarily
among the two.

The solution we proposed used bit-vector priorities, with the root having
a null-priority. An OR process with priority X assigned a priority to each of
its children, by appending the child’s rank to X (as described in the section
on state-space search). A REDUCE process uses a more complex method for
assigning priorities. If it contains only AND parallel literals, such as p and ¢
in the example above, they receive identical priorities. When the literals form
a more complex dependence graph, such as the clause consisting of ¢,u,v and
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Fig. 4. The Prioritization Scheme applied to a simple and-or tree

w above, priorities are assigned such that the literals closer to the end of the
dependence graph receive higher priority than those that precede them in the
graph. This is done by assigning “distance bits” to the priorities, which signify
the distance from the end of the dependence graph. Thus, for example, the »
and v processes receive priority X01, which is higher than the priority of the ¢
process (X10), but lower than that of the w processes (X00). Thus, when there
is an s process (and its subtree) available, the system focuses its attention on
completing a solution to s (and thereby a solution to the reduce process) instead
of finding additional solutions to ¢ (or u or v). In addition, multiple instances
of a single literal fired are prioritized so that the one fired earlier has higher
priority than the ones fired later. This necessitates addition of “instance bits”
in addition to the “distance bits” used above, as shown in Figure 5.

Intuitively, the scheme represents the strategy of supporting the subcomputa-
tions that were closer to yielding a solution to the top level goal. (“Support the
Leader” strategy). It solved the “all-solutions-in-a-burst” problem mentioned
above, because p’s and ¢’s subtrees now have identical priority, and so com-
pete for resources with each other, thereby ensuring that some p and some ¢
solutions will be produced in parallel. We were able to demonstrate good first
solution speedups for problems involving both AND and OR parallelism, with
very little overhead; This was accomplished without affecting the performance
on pure AND and pure OR parallel problems, or on all-solution searches. For
further information about this scheme, we refer the reader to [30].

Table 5 below shows the performance of our strategy on a benchmark. This
program involves finding a prime that can also be expressed as a sum of a
Fibonacci number and a perfect number. The first benchmark problem was:

“ fib(F,20000) // perfect(P,3000) — X is F+P — prime(X).”
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Fig. 5. Prioritization for clauses with dependence graphs. The first row shows prior-
ities with distance bits only, while the second row shows priorities with instance bits
appended.

Ie. it first searches for a Fibonacci number and a perfect number (in the
specified range) in parallel, and for every pair obtained, checks if its sum is a
prime. The second problem increases the problem size and requires that the
primes so found be larger than 50,000.

“ fib(F,80000) // perfect(P,3000) — X is F+P — X > 50000, prime(X).”

As seen in the table, the time to first solution for the second instance was
reduced almost ten-fold, at the cost of a small overhead (as represented by the
overall time to completion, which increased from 27.9 to 28.0 to 29.6).

Table 5. Performance of two benchmark problems with AND and OR parallelism on
Sequent Symmetry with 16 processors. For each case, time to first solution is shown,
followed by the time to completion in parenthesis, in seconds.

Depth-First | Prioritized: distance bits | distance and instance bits
Problem 1 || 2.4 (15.0) 1.4 (14) 0.8 (16.0)
Problem 2 || 23.2 (27.9) 3.5 (28.0) 2.8 (29.6)

Consistent Speedups: The method described above is not free from anomalies.
The results from state-space search made it clear to us that consistent non-
anomalous and monotonic speedups can be obtained in that domain. We then



applied these techniques to the parallel Prolog system, while restricting ourselves
to pure OR parallel programs without any AND parallelism. The description of
the process structure for ROPM described above should make it clear why the
application is not straight-forward. The OR tree (search tree) used in state-space
search is now folded into the REDUCE/OR tree.

The scheme we developed in [34] to address the speedup anomaly involves
tagging responses with their priorities, and using the response’s priority to decide
the priority of any processes fired due to it. For example, a REDUCE process
with priority X may have two dependent literals p and g, with ¢ being dependent
on p. A solution returned for p would have a priority indicating its place in the
tree beneath p, say XY. The priority of the g instance fired using this binding
returned by p will then be XY also. (Compare this with the scheme described
above in which the priority of ¢ would have been XO0). If this ¢ instance sends
a solution tagged with a priority vector XYZ, the resultant binding is sent as a
response to the parent of the REDUCE/OR process with priority vector XYZ
attached to it. (As opposed to just X in the previous scheme).

The complete details of this scheme can be found in [29]. We only note
that consistent and excellent first solution speedups were obtained for pure OR
parallel Logic Programs with this scheme. As an example, the following table
shows the performance of the Prolog compiler with priorities, running a Prolog
program to find a Knight’s tour on a 6x6 board. The speedups observed were
very consistent from run to run, and can be seen to increase well with processors.
The degree of wastage can be estimated from the number of messages processed,
which is proportional to the number of processes created, and is seen to be well
controlled.

Table 6. Performance of prioritized Parallel Prolog Compiler on a 6x6 Knight’s tour
program on Sequent Symmetry.

Processors 1 4 8 12 16 20

Execution Time (Secs.) || 1245 | 337 183 127 97 80
Messages Processed 9348 | 9464 | 9526 | 9617 | 9624 | 9694
Wasted Work 0% 1.2% | 1.9% | 2.8% | 2.9% | 3.7%

Dealing with AND Parallelism: The first scheme described above improves
first solution speedups in AND/OR parallel programs, but suffers from anoma-
lies, whereas the second scheme yields consistent speedups but works only for
OR parallel programs. A synthesis of these is needed. We developed a simple
scheme [29] that is sufficient to ensure consistent and linear speedups for many
(but not all) AND/OR problems. We believe that schemes that involve dynamic
changing of priorities are necessary to handle this class of problems.
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Fig. 6. Performance of a prioritization scheme for game tree search, on Sequent Sym-
metry. Speedups are relative to one processor speeds.

4.6 Game Trees

Alpha-beta search is an efficient game tree search procedure. However, when
trying to conduct the search for the best move in parallel, it imposes a sequential
bottleneck, as it requires information generated by left subtrees to be used within
right subtrees. Attempts to obviate this bottleneck may reduce the amount of
pruning, and thus increase the number of nodes examined, thus undermining
potential gains of parallel processing. We investigated a parallel method that is
symmetric in the sense of not requiring a strict left-to-right information flow.
Each node (process) maintains a lower and upper bound on the value of the
position it represents. As these bounds change during computation, their new
values are sent to the parent processes. The pruning rule in this context becomes:
“any child, for which the best it can do is worse than the worst I can do” is
pruned. (For a max node: “Any child whose upper bound is smaller than my lower
bound” is pruned.) Notice that this rule may prune children even when none of
them have final values, unlike the alpha-beta. So, it is potentially possible that



this method, under a proper prioritization strategy, may need to explore fewer
nodes than the alpha-beta strategy. Finding such a strategy remains an open
problem at the moment. However, we have explored some simple prioritization
strategies that lead to reasonably good performances [21]. Figure 6 below shows
the performance of a simple strategy from [21] on a game position for the board
game Othello, with a 8-ply search.

Notice that the above formulation leads to many different types of mes-
sages — those carrying new nodes to be expanded, those carrying updates
to lower/upper bounds, those carrying termination messages (telling a child it
should terminate its subtree and then itself), etc. Assigning differential priorities
depending on the type of messages becomes at least as important as assigning
different priorities to messages of the same type. The specific strategies we em-
ployed for this purpose are described in [21].

4.7 Bi-directional Search

When the goal state of a state-space search is fixed, and the operators for trans-
forming states are invertible, it becomes feasible to search backwards from the
goal state to the start state. Such search is not feasible for the N-queens problem
because a goal state is specified only implicitly, by the constraints it must satisfy.
It is feasible for the 15-puzzle or Rubik’s cube, for example, because the desired
state is concretely known.

For such problems, it is then possible to search in both directions - a forward
search from the starting state and a backward search from the goal state. This
can lead to potentially tremendous reduction in search space, as illustrated in
Figure 7. Assuming a uniform branching factor of b and a depth of d for the
search tree, the size of the search space reduces from b% to 2b%2. So, with a
branching factor 2, and a depth of 30, one can reduce the search space (ap-
proximately) from a billion states to only 65,000 states. The promise of such a
reduction makes bi-directional search very attractive.

A few details must be dealt with before attempting to realize these gains.
Korf et. al. [16, 17] have explored these issues in the past. The forward and
backward search must intersect in time, so as to make sure the solution states
don’t miss each other. This rules out the space-efficient depth-first search for
at least one of the two directions. We must store the states in the backward
(or symmetrically, the forward) search, and then search in depth-first manner
in the forward (backward) direction. Given the memory limitations, it may be
necessary to limit the depth of backwards search to less than half of the total
depth. Secondly, the depth d may not be known apriori. Again, as suggested by
Korf et. al., we can employ an iterative deepening search when d is not known in
advance. For simplicity, we can carry out a single backward search up to a depth
b from the goal state once, store all the states so generated, and then carry out
multiple iterations of the forward search with increasing depth-bounds d (see
Figure 8). It suffices to store only the last (top) layer in the backward search, as
any solution path must pass through a state in this layer. We will call this layer
the “goal layer” in the following.
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Fig. 7. Potential reduction in search-space with Bi-directional search.
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Fig. 8. bi-directional search for an IDA* iteration with depth-bound d

Parallelization of this algorithm requires a decision on how to store the goal
layer — it can either (a) be replicated on all processors or (b) distributed across
processors. With (a), it uses up more memory and so can store a shallower
tree, but avoids message passing overheads for checking the goal layer for every
state generated in the forward search. The choice depends on the number of
processors — with more processors, you can store more layers with (b) and the
gains in reduction of forward search-space start to outweigh the message passing
overheads. The crossover point depends on the work done per state, and on
the message passing overhead, and so is different for different applications, and
possibly on different machines. We chose to use the distributed storage of the
goal layer.

The problem we chose for this experiment was the 15-puzzle. We used the
Manhattan distance heuristic (the minimum number of moves from any state
to the goal state is at least the sum of the distance each tile is away from its



“home”). Each node in the forward search has a g value — which is the number
of moves from the start state required to reach it — and an h value, which is
the heuristic value for the node as defined above. A node in the forward search
is checked for occurrence in the goal layer if its g value equals d — b. Also, a node
a pruned (i.e. discarded) if g + h > d, because there is no prospect of finding a
solution of depth d under it.

There is an issue of speculative computation in the last iteration, when one
is looking for one optimal solution. To understand the issues in bi-directional
search, we decided to isolate that issue by assuming that we are looking for
all optimal solutions. As we carried out experiments with varying degrees of bi-
directional search on 32, 64 and 128 processors of an NCUBE, a surprising result
emerged, as seen in Table 7. The performance actually became worse when we
used bi-directional search! The variant with no backward-search was the fastest.
What happened to the tremendous promise of bi-directional search?

Table 7. Performance is worse with bi-directional search! Timing results for a 15-puzzle

instance (Korf Problem #2) on NCUBE/2. All times are in seconds.

Depth of 32 processors | 64 processors | 128 processors States
backward search Explored
0 461 233 119 81,958,206
12 475 239 125 81,075,244
18 518 266 148 71,819,789

The solution to the mystery can be found by looking at the shape of the
forward search tree. By counting the number of nodes at each level in the forward
search, it can be seen that this shape is roughly as shown in Figure 9. I.e. the
branching factor is not uniform, and it varies with the depth of the tree. It has an
expanding phase followed by a “stagnant” phase, followed by a shrinking phase.
(Stone & Stone also report similar shapes of search trees in [37].) It turns out
that the lower bounding heuristic — the Manhattan distance one — is a strong
pruning device, which discards a majority of the new states being generated
at deeper levels in the tree. For such problems, backward search is essentially
useless, as the size of the search space with bi-directional search is essentially
similar to that with forward search alone. This is confirmed by counting the
number of states explored (the last column of the table above), which are seen
to be reduced from 82 million to 72 million, a much smaller reduction, with a
much steeper price to pay in terms of communication.

To confirm the hypothesis further, we explored the 15 puzzle problem further
by intentionally weakening the heuristic. The heuristic lower bound on each
node was set to be w times the Manhattan distance, with 0 < w < 1. With
such weakening, the size of the search space explodes, and we were forced to
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Fig. 9. A schematic view of the shape of the forward search space.

consider a smaller problem instance. With w = 0.7, for example, we were able to
demonstrate the advantages of bi-directional search, as shown in Table 8. Thus,
assuming that there will be other problems where such a strong heuristic is not
available, bi-directional search can be still useful.

Table 8. Performance with weakened heuristics — Bi-directional search has its advan-

tages.
Depth of 32 processors | 64 processors | 128 processors States
backward search Explored
0 952 480 241 177,263,862
12 975 505 270 159,092,443
18 605 301 184 50,810,983

Thus, our aim of exploring first-solution speedups with bi-directional search
was beset, at least for 15 puzzle, at this point as even for all solutions, bi-
directional search wasn’t very promising. For problems (with weaker pruning
heuristic) where it is promising, the following steps must be taken for first-
solution speedup: First, the forward search must be prioritized, with bit-vector
priorities as in simple state-space search. Secondly, to avoid backward search
consuming more time than the forward one, the two should be overlapped in
time. We plan to explore these issues further with other search problems. Some
preliminary results on the “Peg solitaire” game are in [2]. That report also deals
with “duplication detection” which is relevant for simple as well as bi-directional
searches where states may recur independently in different parts of the search
tree.



5 Implementing Priorities on Parallel Systems

Most prioritization strategies for parallel systems can be considered to be vari-
ants of either a centralized or a fully distributed scheme. In the centralized
scheme, work is allocated to requesting processing elements from a central pool
of work, where the work is sorted exactly according to their priorities. In a sim-
ple fully distributed scheme, each individual processing element maintains its
own pool of work (sorted according to priorities). Any new work generated is
sent to a randomly selected processor. The variations in these strategies arise
with the differences in schemes used to balance work and balance priorities. In
case of the centralized strategies, the central pool of work becomes a source of
bottleneck. Fully distributed strategies on the other hand suffer from an inability
to adhere to priorities on the global level (low priority work might be done on
some processing elements, even though there exist higher priority work on other
processing elements).

Our earlier work [29] involved a fully distributed approach to prioritization
in a parallel system. The initial distribution of the work onto various processing
elements is random. Subsequently, processors periodically exchange information
about load and priorities with their neighbors, and attempt to distribute priori-
ties and load by moving work around. These strategies still have the drawback (to
a smaller extent) we discussed earlier — priorities are not distributed uniformly
over processors, hence low priority (wasteful) work gets done. For additional
variants of this strategy and their performance on various machines we refer the
reader to [29].

Centralized strategies provide good priority adherence and load balancing.
Their weakness is that the central pool of work becomes the bottleneck. We
can solve the problem of a bottleneck by splitting the pool of work amongst a
few processing elements — essentially creating some sort of a semi-distributed
strategy as described in [36, 33]. In the strategy in citeSinhalPPS93, the pro-
cessors in the system are partitioned into clusters. One processor in each cluster
is chosen as the load manager, the remaining processors in the cluster being its
managees. Managees send all new work created on themselves to be queued in
a centralized pool (sorted according to priorities) at their corresponding load
manager. Each load manager has two responsibilities:

1. It must distribute the work among its managees. The managees inform their
load managers of their current work load by sending periodic load informa-
tion and piggybacking load information with every piece of new work they
send to the manager. The load manager uses load information from its man-
agees to maintain the load level within a certain range for all its managees.

2. It must balance both load and priorities over all the load managers in the
system. This is accomplished by an exchange of some high priority tasks
between pairs of managers. Each manager communicates with a defined set
of neighboring managers. An exchange of tasks between a pair of managers
occurs in two steps. In the first step, the managers exchange their load in-
formation. In the second step each manager sends over some tasks to the



other manager. A fixed number of tasks are always sent — this does the pri-
ority balancing. In addition, more (again, a fixed number) tasks depending
on the task-loads of the managers involved are sent by the manager with
greater load to the manager with the lesser load — this contributes to the
load balancing. Note that the tasks exchanged are the highest priority tasks
on each manager It might seem that by sending its highest priority tasks to
another load manager, the sending manager is not distributing its priorities
correctly. However this strategy performed well. We can intuitively explain
why exchanging the top priority tasks might be sufficient: the managees of
each manager work on the top priority elements on their load managers, so
(in some sense) their work represents the top priority elements on the man-
ager. Therefore an exchange of work between managers causes a distribution
of the top priorities between two managers and their managees. We experi-
mented further by implementing a strategy in which priorities were balanced
by having pairs of managers exchange one-half of their top priority tasks.
But this strategy resulted in a degradation in performance. We attribute the
degradation in performance to the cost of determining the top half elements.

There is an imbalance in the memory requirements of the load managers and
the managees in the hierarchical strategy. The imbalance arises because all newly
created work is queued up at the load managers. This poses problems because
the amount of new work that can be created becomes limited by the number of
managers and their available memory, even though there is a larger amount of
memory available on the managees (assuming all processors in the system have
an equal amount of memory, and that there is more than one managee for each
manager). We can balance memory requirements of processing elements using
the following variant of the above strategy, developed in [36].

As in the above scheme, the processing elements in the system are split up
into clusters — one processor in each cluster is chosen as the load manager,
the remaining processors are its managees. However, now new work created on
managees is stored in hash-tables on the processor itself, while only a token
containing the priority of the new work is sent to the load managers. The load
managers balance these prioritized tokens among themselves by exchanging their
high priority tokens similar to the above. Each managee informs its manager
of its load by (1) piggybacking load information with each token it sends to
the manager, and (2) periodically sending load information. When a manager
decides that one of its managees (say M) needs work, it selects the highest
priority token from its (the manager’s) pool of tokens, and sends a request to
the processor storing the work corresponding to the token for the work to be
sent to M.

6 Discussion

We argued that associating priorities with new processes and messages is an
effective method for controlling the “focus” of a parallel symbolic computa-
tion. Although integer priorities are sufficient for some domains, other domains



are seen to require unbounded levels of priorities specified via arbitrary-length
bit-vectors. Priorities are particularly effective for speculatively parallel compu-
tations, where part of the parallel work may be wasted, and so it is important
to identify and focus on specific parts of the overall computation. Prioritization
strategies for several tree-structured computations including state-space search,
iterative deepening game tree search, branch-and-bound, and logic programming
(which is the same as problem reduction based problem solving and planning
from this paper’s point of view) were developed and their success demonstrated.
There still remain many open problems in prioritization particularly for game-
tree search, AND-OR tree search, and bi-directional search.

All the computational experiments were carried out in the framework of the
Charm parallel programming system. The system’s modular organization allows
one to plug different load balancing and queuing strategies without having to
re-code the rest of the mechanics of parallel processing including support for
message driven execution, portability across shared and nonshared memory ma-
chines, etc. Therefore, the Charm runtime system is an excellent testbed for such
research. Several prioritization strategies were implemented as Charm modules,
including a scalable yet effective variant that balances the three objectives of
load balance, priority balance and memory-utilization balance. The modules are
now part of the Charm system, where the users can select any one of them to
link with their programs.

One of the interesting themes that came up repeatedly in different compo-
nents of the work described here involves the importance of heuristic. In many
state-space search problems, good value ordering heuristics combined with effec-
tive pruning strategies were able to obviate the need for parallel processing by
essentially homing on to the solution along the leftmost branches of the search
tree. This was true for N-queens problem, almost all instances of the 3-SAT
problem that we tried, graph-coloring problems, etc. Good pruning heuristics
also were seen to nullify the benefits of bi-directional search in many cases (e.g.
15 puzzle). This may seem somewhat discouraging, as it takes away the moti-
vation for parallel processing. However, not all state-space search problems are
as easy as the N-queens, and only a right combination of effective heuristics and
parallel processing combined with prioritization will allow one to tackle some of
the more difficult problems that we may wish to tackle in future. In addition,
there are domains, such as game tree search, AND-OR tree search, and branch-
and-bound, where the size of the search-space is very large, and which cannot
usually be reduced simply by heuristic alone. (Although again lower bounding
heuristics do lead to dramatic search-space reduction in branch-and-bound prob-
lems.) These problems represent a fertile area for future research, which will have
a significant overall impact on real-life applications.

Integration of priorities with futures [5] particularly in connection with the
sponsor model [23, 24] proposed for scheduling futures, represents another inter-
esting problem. Attaching priorities to futures when they are spawned is straight-
forward; however, the sponsor model requires that when a process touches a
future, the future assumes the priority of the touching process. Implementation



of this strategy has similarities with the problem encountered in state-space
searches in connection with duplication detection [2], and also with the game
tree searches, where priorities need to be dynamically propagated [21]. So some
of the strategies developed in these works may be applicable in this context.
Acknowledgements: Most of the research reported in this paper was conducted
by the first author with different (then) graduate students. One exception is the
research by Ramkumar and Banerjee [27], who apply some of our earlier results
on priorities to parallel test pattern generation. Much of the research discussed in
this paper has been reported in separate papers. This paper should be seen as an
overview, which brings together the applications of prioritization from different
contexts. In particular, the work on state-space search and IDA was conducted
with Vikram A. Saletore, the work on parallel Prolog with B. Ramkumar, and
Vikram A. Saletore, the work on branch-and-bound with Amitabh Sinha, and
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