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Abstract

Wearable augmented reality (AR) can help the task of a
user by adding virtual objects to his view on the real
world. To save power in the mobile unit, rendering can be
offloaded to the backbone as much as possible. However,
because of low latency requirements, images for mobile
AR can not be rendered completely in the backbone. We
developed a system capable of end-to-end latencies of
10ms, with a seamless fitting dynamic level-of-detail
framework extending the VRML and Inventor language,
and building on current trends in QoS handling. In this
paper we outline the structure and components of our
system, and discuss a demo application projecting a statue
on the campus.

1. Introduction

Mobile outdoor AR is technically extremely
challenging. The wearable unit must be small and light,
including a small battery, and is therefore limited in
processing power and communication bandwidth. But at
the same time the system has to render virtual objects with
low latency between the user's movement and the
corresponding update of the display (end-to-end
latency), requiring both low-latency tracking and low-
latency rendering.

The type of display the user wears has major
consequences. Optical AR, where the virtual objects are
merged optically into the real world via a half-transparent
mirror, is preferred for mobile outdoor AR applications.
The alternative, video AR, where the real world is recorded
with a camera, and both virtual and real objects are shown
on a monitor before the user's eyes, will degrade the user's
view on the real world and usually avoids the end-to-end
latency issue by delaying the real-world view as well. This
will decrease the quality of his view on the real world,
which may decrease his performance, may cause simulator
sickness and might even be dangerous in case of a system
failure.

When choosing for optical AR, a number of challenging
issues have to be resolved:
• When using optical AR, the requirements for accurate
positioning of virtual objects in the real world
(accuracy) directly imply requirements for the maximum
end-to-end latency. However, even high-end graphics

workstations today are optimized for throughput and not
for low latency.

• Virtual objects cannot just be rendered independently of
the environment. If virtual objects have to be occluded
properly by real-world objects, the rendering system needs
to know about objects in the real world. Also, the system
may need to be aware of other aspects of the environment,
for instance for proper lighting of the virtual objects.

• Batteries are a point of concern for mobile AR
applications. To save energy, it is essential to carefully
trade off the battery usage against wireless network load
and final image quality. A first approach could be to
move computations to the fixed backbone systems.
However, the results of the computations still have to be
transferred back to the user, and if these results are large
or latency-sensitive, the costs of the wireless link may be
prohibitive.

• Current trackers are not suited and/or accurate enough to
support outdoor AR. In indoor immersive VR, for which
most current tracking systems have been designed, tracker
errors cause no immediate problems because all visible
objects have the same error. However with optical AR,
tracker errors are directly visible. Fast and highly accurate
outdoor trackers do not exist yet. The most suitable
outdoor position tracking system is DGPS [1]. It has a
positional accuracy of some centimeters which is
sufficient for many applications, but it does not provide
orientation information, has large latencies and has quite
high power consumption.

Within the UbiCom project [2] an overall approach to
mobile AR has been developed, including the radio, system
software, protocol layers, low-power retinal scanning
displays, outdoor high-accuracy tracking, robust video
transmission and low-latency rendering. In this paper we
focus on the graphics system. The paper is organised as
follows. In section 2 we discuss related work. In section 3
we discuss the UbiCom Graphics subsystem. Next, we
describe a demo application projecting a statue on the
campus. Section 5 draws some conclusions.

2. Previous work

End-to-end latency is the major source of misplacement
of virtual objects in the real world [3]. Especially rotation
of the head can be very fast, in the order of 300 degrees per
second and faster if necessary, and in such a situation a
latency of 10 ms will already amount to a misplacement of



3 degrees. It has been shown experimentally that humans
can detect latencies as low as 8 ms and probably less [4].
Fortunately, many tasks can be accomplished reasonably
effective in presence of delays. For instance, for immersive
VR, latencies in the order of 40 ms are acceptable, even for
relatively latency sensitive tasks as car driving [5].
Configurations using optical AR however, are more
latency sensitive than immersive VR configurations since
real world objects have no latency and delays of virtual
objects can be seen directly. For mobile AR tasks such as
tourist information, remote maintenance and support, we
estimate that 10 ms will be acceptable [6].

There are a number of components in the critical path
amounting to the end-to-end latency of a mobile AR
system: the tracker and its connection path to the graphics
system, the graphics system and its frame buffers, and the
display itself. Typical latencies amount to hundreds of
milliseconds [3], and even most systems designed
specifically for low latency still have in the order of 35-50
ms latency [7, 8].

The mobile system will be unable to render complex
scenes given the latency requirements and limits on power
usage. To lower the load on the mobile system, LOD
rendering can be used. In this scenario, the full scene is
available in the backbone, and the application is handling
this full representation, but only a simplified version is
available in the mobile system for rendering. There are a
number of variants for LOD rendering (Figure 1): simple
imposters [9], meshed imposters [10], images with depth
[11], layered depth images [12] and simplified polygon
models [13].

Figure 1. A number of scene simplification methods. From
top left, in clockwise order: the original object, simplified
polygon object, meshed imposter, image with depth and
simple imposter.

In most cases the application programmer should not be
bothered about all these optimizations and generation of
numerous LODs. Especially for imposters, automatic

generation and refresh is a prerequisite, and when the
application is going to use third-party 3D objects, for
instance from the web or from GIS databases, system
support is required. A number of systems using
automatically updated imposters have appeared in literature.
Most of them support only simple imposters [14, 15]. The
system of Decoret [16] supports meshed imposters.

A number of LOD frameworks have been developed that
support an arbitrary object representation. Funkhouser and
Sequin [17] select a combination of representations such
that the overall cost/benefit ratio is maximised. The
amount of polygons, pixels and vertices in the object are
used to make an estimation of the rendering costs and
benefits of the objects. Mason and Blake [18] improved
this framework by adding support for hierarchical scene
descriptions and clustering or grouping of objects.
Furthermore, they added viewing-direction dependent
cost/benefit ratios, enabling the scheduling of imposters. A
problem with these approaches is that their complexity is
NP-complete, and only solutions that iterate towards a
near-maximum cost/benefit ratio over a number of render
cycles exist. Because of this, the application has no
accurate control over the cost and benefit. Moreover, these
approaches do not incorporate dynamically refreshed LODs.
Especially if the frontend is extremely constrained, for
instance in our wearable AR terminal [2], these restrictions
are unacceptable. Finally, optimising the cost/benefit ratio
does not necessarily lead to a consistent final image
quality; some objects may have higher-than-average, others
lower-than-average quality.

3. The UbiCom graphics system

The UbiCom graphics subsystem is an overall approach
to address the problems discussed in the previous section.
It consists of a low-latency low-power renderer and a
dynamic LOD system, working together via latency
layering and the UbiCom-wide QoS management
philosophy. In this section we discuss these components
and their relations in more detail.

3.1. Latency-layering

In order to meet the end-to-end latency requirement of 10
ms on a wireless terminal, a latency-layered hierarchy is
used [19]. Figure 2 shows the latency layering for the
graphics system. In the inner loop, the user position is
tracked and the image is re-rendered and displayed within
10ms. To run this inner loop within 10ms, we use
extremely fast (2 ms) but somewhat inaccurate inertial
trackers, and render and display a simplified scene closely
resembling the full scene. The correction of the tracker
positions and update of the simplified objects run at a
lower rate in the backbone. The tracking system uses
similar latency layering.



Server (backbone) Client (mobile unit)

position from camera,
GPS and prediction User 

movement

Display

240Hz~10Hz~1Hz

~1s ~100ms <10ms

Position from 
inertial tracker

display
list

simple
virtual
objects

complex
scene
graph

Figure 2. Latency layering in the rendering system.

3.2. Low latency rendering

To render and display the display list within 8 ms (so
that we have 2 ms left for the tracking system), we
developed a low-power variant of the just-in-time pixel
approach of Mine and Bishop [20], running on a
conventional Voodoo2 3D game card [21]. Our rendering
system renders frame slices just ahead of the raster beam
(see Figure 3). For a 65Hz display, a frame is displayed in
approximately 16 ms. Dividing the frame into horizontal
slices, and rendering just ahead of the slice being displayed,
reduces the latency to 8 ms (4 ms rendering and 4 ms
display).

We have measured a latency of 8.5 ms between the
moment the tracker data comes in and the moment the
picture part corresponding to that position has fully been
displayed [6, 22].

16ms

Displaying 
here

Rendering here

To be cleared and rendered

Figure 3. Our 8 ms latency rendering system runs on a
conventional 3D game card, and renders slices just ahead
of the rasterbeam.

3.3. LOD handling

The number of polygons in the scene has to be reduced
drastically in order to be manageable by the mobile unit
and wireless link. Our system can accomodate all
conventional level of detail methods from Figure 1.

In order to estimate the potential benefits and
requirements of distributed dynamic LOD handling, we
made an extensive model of the various simplification
methods, to find out their respective CPU and memory

requirements, and load on the wireless network as a
function of the required image quality and user movements.
Figure 4 shows some typical results. The life time of the
simplification includes predicted user movements. It can be
seen that for distant objects, simple and meshed imposters
are very suited to replace the virtual object, but for nearby
objects the original or simplified polygon models have to
be used. Because imposters are only simple images on a
mesh, they can only be used as long as the user is
approximately in front of them, and have therefore to be
refreshed regularly. Simplified polygon models also may
need to be updated, for instance if the meshes were
optimized for good contours [23] or specular highlights
[24]. For a more detailed description of the model, the
reader is referred to [25, 19].
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Figure 4. Typical results of our mathematical model. Here
the average load on the link is plotted as a function of the
planned lifetime of simplified objects and their distance to
the user.

3.4. QoS management

It is difficult to schedule simplification methods such
that the required quality is reached while minimising the
resource load. The mathematical model as described in the
previous section is useful, but ultimately only the
application can decide which quality and resource load is
acceptable. We therefore developed a three-phase quality of
service (QoS) mechanism that allows the application to
steer the scheduling, quality and resource load. So before
any rendering takes place, the application gets the
opportunity to pick the proper operation point on a curve
representing the current quality/load tradeoff.

This QoS mechanism is based on the project-wide
adaptive resource contracts (ARC) QoS management
philosophy [26]. The ARC mechanism is designed to
support resource management in a distributed environment,
where none of the components has system-wide
knowledge. Such a mechanism is essential in large
systems, such as our mobile distributed AR system. Each
component can be regarded as server for its users, while it
is a client of lower-level layers. ARC components
communicate QoS and resource utilisation parameters
through their interfaces. The operation-space parameters are
transformed to a multi-objective optimization problem



local to the component in question. Analysing and
optimising the options in operation space yields requested
trade-off curve.

In ARC, requesting a service goes in three phases. In
the first phase (Figure 5), the client transforms its internal
requirements (mode) into the proper options in operation
space.  If the server knows all constraints, it enters the
second phase. In case the server depends on lower-level
services however, it transforms the request and passes it
on, so as to gather the necessary constraint information.

client
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options

Mode

Mode

optimizer

feasible
options

server
options

server

client

operation space

Figure 5. Phase 1 in the ARC style of QoS management.
See text.

In the second phase, the server has received all
constraints and returns the trade-off curve (server options).
An optimizer searches the best match between the posed
request and the offered options, to transform the resulting
set back into the client mode.

Finally, at the top of the hierarchy a client (typically,
the application) starts the third phase by deciding on a
specific operation point and instructing its server
(establishing a contract). To settle the contract at the
server-side of a component, the component may also
establish its own contracts at its client-side. As soon as
contracts have been settled real service can commence.

3.5. Accuracy curves

To fit the ARC model to rendering, we have to split the
render action into three phases. Firstly, the application
requests the whole range of options from the rendering
system. Secondly, the application picks the proper
operating point (typically, the required accuracy and the
amount of resources to be used), and finally, it requests
rendering of the scene graph using this operating point.

To expose the rendering possibilities to the application,
we use accuracy curves. An accuracy curve describes the
relation between the resources and the reachable accuracy
(see Figure 6). The curve is monotonically increasing, as

providing more resources (for instance, more polygons)
should never imply lower accuracy. Note that we extended
the ARC concept slightly, as we allow linear interpolation
between the discrete points in operation space.

200

400

600

800

1000

5 10 15 20 25 30 35

R
es

ou
ce

 u
sa

ge

Accuracy �
Figure 6. Typical accuracy curve: Garland's cow [13].
Horizontally the accuracy, vertical the amount of
resources required to reach that accuracy. See text.

In our prototype implementation, accuracy is the inverse
of the maximum displacement of pixels on the screen (due
to the simplification used internally in the rendering
system), and the resource usage is represented by the
number of polygons in the simplifications.

To find the accuracy curves for the entire scene graph,
the curves are first calculated for the leaf nodes and
propagated upwards. For leaf objects the curves can be
either derived mathematically, automatically estimated or
explicitly given by the scene designer. Propagating curves
through the VRML LOD and group node can be done
efficiently.
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Figure 7. Propagation of curve1 and curve2 through an
LOD node, the result is the minimum curve.

Figure 7 illustrates the most interesting case:
propagation through a LOD node. During rendering, an
LOD node will pick the cheapest representation that gives
the required accuracy. Therefore, the minima of the resource
usages of the curves of the children of the LOD node are



taken for the curve of the LOD node. Many details,
optimizations and exceptions have to be taken into
account. For more details, the interested reader is referred to
[25, 27].

4. Statue application

To test the functionality of our system, we placed a
virtual statue on the campus. The statue was scanned in
from a real statue, and consists of 343k polygons. Our
current prototype can not handle this model in full detail in
real time, because all VRML files are currently transmitted
to and parsed uncompressed in the backbone simplification
machines. Instead, we used a 10k polygons model
internally.

At this time, our outdoor tracking system is not yet
operational. To still get an impression of the behaviour of
our real-time rendering system, we replaced the real world
and the tracking system by a video file annotated with
position and orientation data. The video was played back
with synchronous position information routed to our
rendering system. Our rendering system thus behaved
exactly as if a user was walking over the campus, and
generated AR images in real time. These were mixed
optically with the video to avoid mixing artefacts [28]. The
set-up thus obtained is shown in the diagram of Figure 8.

The environment video was recorded by moving around
with a video camera in front of the planned location of the
virtual statue. The movements are similar to the head
movements a person with our AR headset would make.
The video was corrected both for barrel distortion and for
the time difference between the time the upper and lower
line of the image are displayed on a conventional TV.
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Figure 8. Setup to test our real-time low power rendering
system.

The position and orientation data was recovered from the
individual camera images. The position was recovered for
each camera halfframe, by matching a few recognised
points (typically 3) with the real-world positions stored in
a GIS database. A simple symmetric 5-tap low-pass filter
was applied to remove some of the noise on the estimated
camera orientation.

We used the audio channel of a digital video tape to
synchronise the tracker stub with the video playback, so
that the position and orientation corresponding to the
current video frame could be picked from the position file.

Figure 9 shows two snapshots from the final video file.
Figure 9a shows a nearby view of the statue. The statue is
half-transparent due to the optical mixing of our AR
system. Figure 9b shows a distant view, where the virtual
statue is partly occluded by real-world artwork. The video
shows that our prototype reaches the real-time
requirements, and that this results in stable projection of
the statue even when fast head movements occur. Also, the
latency layering shows to work out well in practice.

Figure 9a. Nearby view at the statue. Figure 9b. Detail of more distant shot, where the virtual
statue is partially occluded by real-world artwork.



To get a better impression of the behaviour of our
QoS mechanisms, we made two plots of the resource
usage versus the image quality. To challenge the system
somewhat more, for this test we walked around in a more
complex scene with a cow, two spheres and a cylinder at
a few meters distance. Figure 10 shows the plot when the
application requests a constant resource load of 200
polygons. As can be seen, the resource load is accurately
maintained and never exceeded. The visual quality
measure (SNR) shows a few dips, caused by temporal
absence of virtual objects on the display.  Figure 11
shows the result for a constant target accuracy of 200/rad.
Again this target is met accurately, and the SNR is quite
stable around 10dB. More details can be found in [27].
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Figure 10. Resource load versus image quality when
constant resource load is requested.
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Figure 11. Resource load versus image quality when
constant accuracy is requested.

5. Discussion and conclusions

The current viewpoints could be handled with simple
and meshed imposters. If the observer would come closer
to the statue, it becomes necessary to represent the object
with a polygon model, because the bandwidth to the
headset does not allow us to update images quick enough.
Although the meshed imposters work fine in the statue
application we discussed, disturbing artefacts were noticed
when the virtual objects are relatively deep. This topic
could use more research.

The geometric distortions of simplified polygon
models are acceptable at near range, but to keep the statue
visually appealing, a texture should be mapped on the
polygon model. Although the simplification software can
handle such textures, we don't have software to generate
the required textures. Mechanisms for automatic
generation of textures exist [29].  But they require the
object surface to be cut into a large amount of patches,
and this process will disturb dynamic simplification of
the mesh because texture coordinates can not be
interpolated anymore [30].

Our prototype system is not really low power, as it is
based on off-the-shelf PC hardware. But the current
NVidia GeForce2-go single-chip accelerator uses less
than 1W and has higher performance [31], so it can
theoretically replace our Voodoo2 graphics card. We are
working on hardware for a wireless low-power platform
[32].

We discussed the concept of the rendering system of
the UbiCom mobile AR project. To explain the total
concept and its relations, latency layering, low-latency
rendering, LOD handling, and QoS management using
accuracy curves were described. Finally we showed the
capability of the rendering system to render complex
virtual objects in a stable and robust way, while at the
same time using only little power.
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