
1

Impostors for Interactive
Parallel Computer Graphics

Orion Sky Lawlor
olawlor@acm.org

2004/11/29

http://charm.cs.uiuc.edu/users/olawlor/academic/thesis/

8

2

Overview
n Case Studies
n Prior Work
n Serial Rendering and Problems
n Parallel Rendering and Problems
n Impostors

n New Work
n Parallel Impostors Technique
n Better Rendering Enabled by

Parallel Impostors

n Conclusions

3

Selection of Case Studies
n Current state of the art hardware and

techniques can handle simple small smooth
surfaces well
n Small in both meters and bytes
n Smooth; low in geometric complexity

• But possibly high in (theoretical) polygon count

n Simple lighting
n Simple aliased point-sampled geometry

n Large, complex geometry not handled well
n Large in bytes and meters
n Geometric complexity
n Rendering fidelity
n Rendering complexity

4

Large Particle Dataset
n Computational

Cosmology
Dataset

n Large size
n 50M particles
n 20 bytes/particle
n => 1 GB of data

5

Campus Dataset
n Large virtual world
n Built on a terrain model
n Complex rendering
n Light, shadow, geometric detail

6

Prior Approaches
and Unsolved Problems

7

Approach #1:
Just use a good graphics card!

8

Approach #1: Serial Rendering

n Draws only polygons,
lines, and points

n Supports image texture
mapping, transparent
blending, primitive
lightingnVidia

GeForce 6800

n Graphics cards are fast, right?
n So just render everything on the graphics card

n Exponentially Increasing Performance

n Consumer hardware vertex processing (1999)

n Programmable hardware pixel shaders (2001)

n Hardware floating-point pixel processing (2003)

n Per-pixel branching, looping, reads/writes (2005)

9

Graphics Card Performance

t total time to draw triangle (seconds)

α triangle setup time (about 50ns/triangle)

β pixel rendering time (about 1ns/pixel)

s area of triangle (pixels)

r rows in triangle

γ pixel cost per row (about 3 pixels/row)

Triangle Setup
Projection, lighting, clipping, ...

Pixel Rendering
Texturing, blending

!

10

Graphics Card: Usable Fill Rate

NVIDIA GeForce 3

Small
triangles

Large
triangles

11

Smooth vs Complex Surfaces
n Smooth Surfaces

n Polygons/patches
n Continuous, well-

defined surface
n Lots of occlusion
n Mesh simplification

[Garland 97]
n Can sometimes be

made fillrate limited

n Complex Surfaces
n Particles/splats
n All discontinuity; no

well-defined surface
n Not much occlusion
n Lazy surface

expansion [Hart 93]
n Never fillrate limited

12

Serial Rendering Drawbacks
n Graphics cards are fast
n But not at rendering lots of tiny

geometry:
• 50K polygons/frame OK
• 50M pixels/frame OK
• 50M polygons/frame not OK

n Problems with complex
geometry do not utilize current
graphics hardware well

n The techniques we will describe
can improve performance for
geometry-limited problems

13

Approach #2:
Just use a parallel machine!

14

Approach #2: Parallel Rendering
n Parallel Machines are fast, right?

n Scale up to handle huge datasets
n Render lots of geometry simultaneously
n Send resulting images to client machine

n Tons of raytracers [John Stone’s Tachyon],
radiosity solvers [Stuttard 95], volume
visualization [Lacroute 96], etc

n “Write an MPI raytracer” is a homework
assignment

n Movie visual effects studios use frame-
parallel offline rendering (“render farm”)

n CSAR Rocketeer Apollo/Houston: frame
parallel

n Offline rendering basically a solved problem

15

Parallel Rendering Advantages
n Multiple processors can render

geometry simultaneously

n Achieved rendering speedup for large
particle dataset

n Can store huge datasets in memory
n Ignores cost of shipping images to

client

48 nodes of Hal cluster: 2-way 550MHz Pentium III nodes connected with fast ethernet

16

Parallel Rendering Disadvantage

Parallel Machine Desktop Machine

Display

10 MB/s
Fast Ethernet

10 GB/s
Graphics Card
Memory

n Link to client is too slow!

Cannot ship
frames to
client at full
framerate/ full
resolution

WAY TOO SLOW!

17

Parallel Rendering Bottom Line
n Conventional parallel rendering

works great offline
n But not for interactive rendering

n Link to client has inadequate bandwidth
• Can’t send whole screen every frame

n System has zero latency tolerance
• Client has nothing to do but wait for next

frame
• If parallel machine hiccups, client drops

frames

n The techniques we will describe can
improve parallel rendering
bandwidth usage and provide latency
tolerance

18

Parallel Rendering in Practice
n Humphreys et al’s Chromium (aka Stanford’s WireGL)

n Binary-compatible OpenGL shared library
n Routes OpenGL commands across processors efficiently
n Flexible routing--arbitrary processing possible
n Typical usage: parallel geometry generation, screen-

space divided parallel rendering
n Big limitation: screen image reassembly bandwidth

n Need multi-pipe custom image assembly hardware on
front end

[Humphreys et al 02]

$$$!
$!

19

Unconventional Parallel Rendering

n Greg Ward’s “ray cache”
n Parallel Radiance server

renders and sends bundles
of rays to client

n Client interpolates
available nearby rays to
form image

[Mark 99]

[Ward 99]

n Bill Mark’s post-render
warping
n Parallel server sends every

N’th frame to client
n Client interpolates

remaining frames by
warping server frames
according to depth

20

Impostors

Fundamentals
Prior Work

21

Impostors
n Replace 3D geometry

with a 2D image
n Image an “impostor”

n 2D image fools viewer
into thinking 3D
geometry is still there

n Prior work
n Pompeii murals
n Trompe l’oeil (“trick of

the eye”) painting style
n Theater/movie

backdrops

n Main Limitation
n No parallax-- must

update impostor as
view changes

[Harnett 1886]

22

Impostors : Idea

Camera

Impostor

Geometry

23

Impostor Reuse
n We don’t need to redraw the impostors every frame

n If we did, impostors wouldn’t help!
n Can reuse impostors from frame to frame

n Can reuse forever under camera rotation
n Far away or flat impostors can be reused many

times
n Assuming reasonable camera motion rate

Number of frames impostor can be reused, for various depth ranges (columns) and distances (rows)

24

Impostors for Complex Scenes
n Use different

impostors for
different objects
in scene
n Get some parallax

even without
updating

n Number of
impostors can
depend on
viewpoint

25

Parallel Impostors

Our Proposed Solution

26

Parallel Impostors Technique
n Key observation: impostor images

don’t depend on one another
n So render impostors in parallel!

n Uses the speed and memory of the
parallel machine
• Fine grained-- lots of potential parallelism

n Geometry is partitioned by impostors
• No “shared model” assumption

n Reassemble world on serial client
n Uses rendering bandwidth of client

graphics card
n Impostor reuse cuts required network

bandwidth to client
• Only update images when necessary

n Impostors provide latency tolerance

27

Client/Server Architecture

n Parallel machine can be anywhere on network
n Keeps the problem geometry
n Renders and ships new impostors as needed

n Impostors shipped using TCP/IP sockets
n CCS & PUP protocol [Jyothi and Lawlor 04]

n Works over NAT/firewalled networks
n Client sits on user’s desk

n Sends server new viewpoints
n Receives and displays new impostors

28

Client Architecture
n Latency tolerance: client never waits for server

n Displays existing impostors at fixed framerate
n Even if they’re out of date

n Prefers spatial error (due to out of date impostor) to
temporal error (due to dropped frames)

n Implementation uses OpenGL for display
n Two separate kernel threads for network handling

29

Server Architecture
n Server accepts a new viewpoint from client
n Decides which impostors to render
n Renders impostors in parallel
n Collects finished impostor images
n Ships images to client

n Implementation uses Charm++ parallel
runtime
n Different phases all run at once

n Overlaps everything, to avoid synchronization
n Trivial in Charm; virtually impossible in MPI

n Geometry represented by efficient migrateable
objects called array elements [Lawlor and Kale 02]

n Geometry rendered in priority order
n Create/destroy array elements as impostor

geometry is split/merged

30

Architecture Analysis

B Delivered bandwidth (e.g., 300Mpixels/s)

BR Rendering bandwidth per processor (e.g., 1Mpixels/s/cpu)

P Parallel speedup (e.g., 30 effective cpus)

R Number of frames impostors are reused (e.g., 10 reuses)

BN Network bandwidth (e.g., 60 Mbytes/s)

CN Network compression rate (e.g., 0.5 pixels/byte)

BC Client rendering bandwidth (e.g., 300Mpixels/s)

Benefit from
Parallelism

Benefit from
Impostors

31

Parallel Impostors Examples

32

Parallel Particle Example
n Large particle dataset

n Decomposed using an octree

n Each octree leaf is:
n Responsible for a small subset of the

particles
n Represented on server by one parallel

array element
n Rendered into an impostor by its array

element
• When the old impostor cannot be reused

n Drawn on client as a separate impostor
n Able to migrate between processors for

load balance

33

Parallel Particle Load Balancing
n Array elements can migrate between

processors [Lawlor 03] for load balance
n Integrated with Charm++ automated load

measurement and balancing system

After BalancingBefore Balancing Balancing

34

Parallel Impostors Performance
n Parallel Impostors has high

framerate and low L2 error

n Conventional screen shipping has
low framerate and high L2 error

48 nodes of Hal cluster: 2-way 550MHz Pentium III nodes connected with fast ethernet

35

Parallel Campus Example: Server
n Large terrain model decorated

with geometry
n For example, each tree is
n Represented by one array element
n Rendered by that array element

• Only when onscreen and
• Only when old impostor cannot be

reused (based on quality criteria)

n Able to migrate between processors
for load balance

36

Parallel Campus Example: Server
n Terrain ground texture is a

dynamic quadtree
n Each quadtree leaf
n Represents one patch of ground
n Stores outlines of sidewalk, roads,

grass, brick, etc. on ground
n Is represented by one array element

• Using array element bitvector indexing
n Renders an impostor ground texture

for client as needed
n Divides into children if higher

resolution is needed
• Creating new array elements

37

Parallel Campus Example: Client
n Client traverses terrain model

decorated with impostors
n Draws terrain and impostors in

back-to-front order
n Does not expand offscreen parts of

model (checks bounds at each step)

n Client can always draw some
approximation of scene
n Latency (and latency variation)

hiding

38

New Features Enabled
by Parallel Impostors

39

Parallel Impostors Enables...
n Only reason to do any of this is

to make new things possible
n Showed how very large scenes

can now be rendered
n 1 GB particle dataset

n Can now also do better
rendering
n Fully antialiased geometry
n More accurate lighting
n Bigger more realistic databases

40

Antialiasing Impostors
Antialiasing Textures
Antialiasing Geometry

41

Antialiasing Summary
n Textures are easy to antialias
n Hardware can do it easily

n Geometry is harder to antialias
n Hardware can’t do it easily today

n Impostors turn geometry into
texture, but still must antialias
geometry
n Can use any existing antialiasing

method

42

Aliasing: The Problem
Point sampling leads

to “aliasing”

Tiny sub-pixel
features show up
(alias) as noise
or large features

The texture on this
infinite plane is
sampled using
the nearest pixel

43

Texture Antialiasing via Mipmaps
Mipmapping

[Williams 83]
keeps a pyramid
of coarser
images, and
selects a coarse
enough image to
eliminate aliases

This coarsening
works, but
causes excess
blurring on tilted
surfaces

Mipmapping is
implemented on
all modern
graphics
hardware

44

Geometry Antialiasing
n Like texture pixels, objects can

cover only part of a pixel
n E.g., for tiny objects
n Or along object boundaries

n Prior Work:
n Ignore partial coverage and

point sample (standard!)
n Oversample and average

n Graphics hardware: FSAA
n Not theoretically correct; close

n Random point samples
n [Cook, Porter, Carpenter 84]
n Needs a lot of samples:

n Use analytic technique
n Trapezoids
n Circles [Amanatides 84]
n Polynomial splines [McCool 95]
n Procedures [Carr & Hart 99]

Antialiased
filtering

Aliased
point samples

n
σ

σ ='

45

Geometry Antialiasing via Texture
n Texture map filtering is mature

n Very fast on graphics hardware
n Bilinear interpolation for nearby

textures
n Mipmaps for distant textures
n Anisotropic filtering becoming

available
n Works well with alpha channel

transparency
[Haeberli & Segal 93]

n Impostors let us use texture
map filtering on geometry
n Antialiased edges
n Mipmapped distant geometry
n Substantial improvement over

ordinary polygon rendering

Antialiased
Impostor

46

Antialiased Impostor Challenges
n Must generate antialiased

impostors to start with
n Just pushes antialiasing up one

level
n Can use any antialiasing

technique. We use:
n Trapezoid-based integration
n Blended splats

n Must render with transparency
n Not compatible with Z-buffer
n Painter’s algorithm:

n Draw from back-to-front
n A radix sort works well
n For terrain, can avoid sort

by traversing terrain
properly

47

Ground Texture Antialiasing
n Campus example, ground as simple texture
n Mipmaps are fast, but cause excessive blurring

48

Ground Texture Antialiasing
n Ground texture drawn from vector outlines using

analytically antialiased trapezoids
n Chooses ground resolution to match screen
n Achieves high-quality anisotropic antialiasing

49

Splat Aliasing
n Aliased splat geometry: lines break up and wobble

50

Splat Antialiasing
n Antialiased splats: lines stay smooth and clean

51

Penumbra Limit Map
for Soft Shadows

52

Quality: Soft Shadows
n Extended light

sources cast fuzzy
shadows
n E.g., the sun

n Prior work
n Ignore fuzziness
n Point sample area

source
n New faster

methods
[Hasenfratz 03
survey]

n New method based
on a discrete, easy-
to-parallelize shadow
map

53

P

Z

L
A

Z
P

2
1

2
1

+=
Fraction of

light
source
visible

(exact)

Penumbra Limit Shadows
n Main Contribution: new method physically correct
n New method very interpolation-friendly

n Penumbra limit values (green) are planar

54

55

Large Models

56

Scale: Kilometers
n World is really big

n Modeling it by
hand is painful!

n But databases exist
n USGS Elevation
n GIS Maps
n Aerial photos

n So extract detail
from existing
sources
n Leverage existing

manual labor
n Gives reality, which

is useful

57

Practical Difficulties
n Map projections

n UTM, ILCS
n Curvature of Earth

n Undocumented and
bizarre formats

n Formats designed
for 2D; need 3D
n Extrusion

n Inconsistencies
n 1997 vs 2004

n Still much easier
than by hand...

58

Terrain Traversal
n Cannot simply dump all terrain

geometry into graphics card
n Too many polygons

n Must simplify terrain geometry
during traversal
n But must preserve fidelity
n View-dependent level of detail

n Standard method [Lindstrom 03]
n With a few minor improvements

59

Terrain Decomposition
n Terrain level-of-detail: expand until screen error

drops below threshold

60

Terrain Decomposition
n Lindstrom terrain: split quads at even/odd levels

61

Terrain Decomposition
n Optimized terrain: split quads along lower-error axis

62

Terrain Painter’s Algorithm
n Conventional Z-buffer terrain

can be extracted in arbitrary
order

n But painter’s algorithm requires
strict back-to-front rendering
n So recursively traverse terrain in

back-to-front order
n Expand children in back-to-front

order

63

Terrain Painter’s Algorithm
n Extreme Wideangle shot of Denali Nat’l Park

64

Terrain Painter’s Algorithm
n Colored by traversal order

65

Roof Extrusion
n Only have building outlines, not details of roof

topology or even height
n Must synthesize plausible roof shape for

hundreds of buildings
n Building outlines contain lots of colinearity and

other degeneracies!

66

Roof Extrusion
n New (?) triangulation based on Voronoi diagram

n Triangulates medial axis and outline
n Plausible approximation of real roofs

n Medial axis approximately follows ridgeline
n Special “cell edges” run downslope, can highlight

to draw water channels

67

Roof Extrusion
n Procedure is fast and robust

n Built on Fortune’s sweepline algorithm
n Works for all campus buildings without problems
n Simplify resulting roof mesh using quadric

simplification [Garland 97]

68

Contributions and
Conclusions

69

Contributions: Parallel Computing
n Charm++ Array Manager

n Parallel migratable objects support
• Scalable Creation, deletion, messaging, migration
• Used here to represent chunk of geometry for impostor

rendering
n Collectives with migration [Lawlor 03]

• Used here to distribute new viewpoints to impostors

n Charm++ PUP Framework
n Introspection for C++ objects
n Complex cross-platform communication protocols made

easy [Jyothi and Lawlor 04]
n Used here for impostors:

• To/from disk files (scene I/O)
• To client from server
• Between processors of parallel machine for load balance

n CCS Protocol
n Fast, portable network connection to parallel machines

[Jyothi and Lawlor 04]
n Works even with both ends behind firewalls or NAT
n Used here to connect parallel impostor server to client

70

Contributions: Parallel Rendering
n Parallel Impostors technique for
n Additional rendering power

• More geometry per frame
• Better rendering algorithms
• Quality antialiasing

n Improved bandwidth usage
• Impostor reuse cuts required

bandwidth

n Increased latency tolerance
• Client can always draw next frame

using existing impostors
• No dropped frames from network

glitches

71

Contributions: Quality Rendering
n Techniques for
n Antialiased geometry

• Analytic filtering and smooth splats

n Quality lighting
• Soft shadows via Penumbra Limit Maps
• Global illumination via Impostor GI

n Large worlds
• GIS and Terrain tweaks

n Procedural geometry generation
• IFS Bounding [Lawlor and Hart 03]

n Cost of these techniques is
affordable with Parallel
Impostors

72

Total Lines of Code
n Conservative total of 63K lines of C++ code (with some C)

n Parallel-Rendering specific: 16K lines
n 9K Rendering and IFS support (for campus model)
n 3K LiveViz3d server library (parallel impostors)
n 1K LiveViz2d server library (screen shipping)
n 1K Campus server code
n 1K Campus client library
n 1K Campus building assembly

n Graphics Infrastructure: 31K lines
n 10K 2D antialiased rendering library
n 8K Matrix, vector, and other math
n 6K PostScript interpreter
n 3K Terrain system
n 3K Geospatial/map libraries
n 1K Raytracer library

n Parallel Infrastructure: 16K+ lines (CVS: 47K)
n 4K Array Manager
n 4K Common data structures
n 3K PUP Framework
n 2.5K CCS Protocol

nUnrelated UIUC code: 25K lines

n7K FEM Framework

n4K CSAR Remeshing

n3K NetFEM client and server

n3K Data transfer library

n2.5K Collision library

n2K Multiblock framework

n1.5K TCharm library

n1.5K CSAR Makeflo

73

Future Work
n Camera motion prediction
n Impostor prefetching

n Multi-impostor interpolation
n Lightfield-style direction capture

n Fully hierarchical traversal
n Split down to leaf and branch

n Integration with Impostor
Global Illumination

http://charm.cs.uiuc.edu/users/olawlor/academic/thesis/

74

Backup Slides

75

Demo

76

Campus with Pure OpenGL

77

Campus with Parallel Impostors

78

Impostor Frames

79

Importance of Computer Graphics
n “The purpose of computing is insight,

not numbers!” R. Hamming

n Vision is a key tool for analyzing and
understanding the world

n Your eyes are your brain’s highest
bandwidth input device
n Vision: >300MB/s

• 1600x1200 24-bit 60Hz
n Sound: <1 MB/s

• 96KHz 24-bit stereo

n Touch: <100 per second
n Smell/taste: <10 per second

n Plus, it looks really cool...

80

Impostor Global Illumination

81

Quality: Global Illumination
n Light bounces between

objects (color bleeding)
n Everything is a

distributed light source!
n Prior work

n Ignore extra light
n “Flat” look

n Radiosity
n Photon Mapping
n Irradiance volume

[Greger 98]
n Spherical harmonic

transfer functions

82

Impostor Global Illumination
Sweep plane

through scene,
accumulating
light from objects

Identical to
standard
voxel/cubemap
parameterization,
but much faster
to compute

Allows geometry to
be filtered during
sweep

83

Complex Geometry

84

Detail: Complicated Geometry
n World’s shape is

complicated
n But lots of

repetition
n So use

subroutines to
capture
repetition

[Prusinkiewicz,
Hart]

85

Demo in 3D

IFS Bounding
[Lawlor and Hart 03]

86

Software vs. Hardware
Rendering Rate

87

Rendering Time for Tree

Level-of-Detail (LOD) jumps

Software becomes
fillrate bound

CPU: 2.2 GHz Athlon64

GPU: nVidia GeForce 6800

88

Rendering Time per Pixel for Tree

CPU: 2.2 GHz Athlon64

GPU: nVidia GeForce 6800

89

Roof Extrusion Details

90

Roof Extrusion Steps
n Start with

building outline
n Discretize

outline into
small pieces
(20cm)

91

Roof Extrusion Steps
n Compute

Voronoi
diagram of
discretized
outline

n Keep Voronoi
vertices
(center) and
edges (green)

n Voronoi
diagram
approximates
medial axis of
building

92

Roof Extrusion Steps
n For Voronoi

edges that cross
the old outline,
delete the edge
and connect the
corresponding
Voronoi vertices
to their
controlling set
points using new
edges (blue)

n The new edges
cannot cross,
because Voronoi
cells are convex

93

Roof Extrusion Steps
n Remove Voronoi

vertices that go
outside the set

n Add Voronoi
edges (red) to
corner vertices
(needed for
acute corners)

n Result is a
triangulation of
the roof outline
and medial axis

n Can now
extrude to 3D
and simplify

94

Roof Extrusion
n Procedure is fast and robust
n Worked for all campus buildings without problems

