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Selection of Case Studies
n Current state of the art hardware and 

techniques can handle simple small smooth 
surfaces well
n Small in both meters and bytes
n Smooth; low in geometric complexity

• But possibly high in (theoretical) polygon count

n Simple lighting
n Simple aliased point-sampled geometry

n Large, complex geometry not handled well
n Large in bytes and meters
n Geometric complexity
n Rendering fidelity 
n Rendering complexity
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Large Particle Dataset
n Computational 

Cosmology 
Dataset

n Large size
n 50M particles
n 20 bytes/particle
n => 1 GB of data
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Campus Dataset
n Large virtual world
n Built on a terrain model
n Complex rendering
n Light, shadow, geometric detail
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Prior Approaches
and Unsolved Problems
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Approach #1:
Just use a good graphics card!
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Approach #1: Serial Rendering

n Draws only polygons, 
lines, and points

n Supports image texture 
mapping, transparent 
blending, primitive 
lightingnVidia 

GeForce 6800

n Graphics cards are fast, right?
n So just render everything on the graphics card

n Exponentially Increasing Performance

n Consumer hardware vertex processing (1999)

n Programmable hardware pixel shaders (2001)

n Hardware floating-point pixel processing (2003)

n Per-pixel branching, looping, reads/writes (2005)
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Graphics Card Performance

t total time to draw triangle (seconds)

α triangle setup time (about 50ns/triangle)

β pixel rendering time (about 1ns/pixel)

s area of triangle (pixels)

r rows in triangle

γ pixel cost per row (about 3 pixels/row)

Triangle Setup
Projection, lighting, clipping, ...

Pixel Rendering
Texturing, blending

!
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Graphics Card: Usable Fill Rate

NVIDIA GeForce 3

Small 
triangles

Large 
triangles
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Smooth vs Complex Surfaces
n Smooth Surfaces

n Polygons/patches
n Continuous, well-

defined surface
n Lots of occlusion
n Mesh simplification 

[Garland 97]
n Can sometimes be 

made fillrate limited

n Complex Surfaces
n Particles/splats
n All discontinuity; no

well-defined surface
n Not much occlusion
n Lazy surface 

expansion  [Hart 93]
n Never fillrate limited
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Serial Rendering Drawbacks
n Graphics cards are fast
n But not at rendering lots of tiny 

geometry:
• 50K polygons/frame OK
• 50M pixels/frame OK
• 50M polygons/frame not OK

n Problems with complex 
geometry do not utilize current 
graphics hardware well

n The techniques we will describe 
can improve performance for 
geometry-limited problems
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Approach #2:
Just use a parallel machine!
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Approach #2: Parallel Rendering
n Parallel Machines are fast, right?

n Scale up to handle huge datasets
n Render lots of geometry simultaneously
n Send resulting images to client machine

n Tons of raytracers [John Stone’s Tachyon], 
radiosity solvers [Stuttard 95], volume 
visualization [Lacroute 96], etc

n “Write an MPI raytracer” is a homework 
assignment 

n Movie visual effects studios use frame-
parallel offline rendering (“render farm”)

n CSAR Rocketeer Apollo/Houston: frame 
parallel

n Offline rendering basically a solved problem
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Parallel Rendering Advantages
n Multiple processors can render 

geometry simultaneously

n Achieved rendering speedup for large 
particle dataset

n Can store huge datasets in memory
n Ignores cost of shipping images to 

client

48 nodes of Hal cluster: 2-way 550MHz Pentium III nodes connected with fast ethernet
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Parallel Rendering Disadvantage

Parallel Machine Desktop Machine

Display

10 MB/s
Fast Ethernet

10 GB/s
Graphics Card    
Memory

n Link to client is too slow!

Cannot ship 
frames to 
client at full 
framerate/ full 
resolution

WAY TOO SLOW!
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Parallel Rendering Bottom Line
n Conventional parallel rendering 

works great offline
n But not for interactive rendering

n Link to client has inadequate bandwidth
• Can’t send whole screen every frame

n System has zero latency tolerance
• Client has nothing to do but wait for next 

frame
• If parallel machine hiccups, client drops 

frames

n The techniques we will describe can 
improve parallel rendering 
bandwidth usage and provide latency 
tolerance
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Parallel Rendering in Practice
n Humphreys et al’s Chromium (aka Stanford’s WireGL)

n Binary-compatible OpenGL shared library
n Routes OpenGL commands across processors efficiently
n Flexible routing--arbitrary processing possible
n Typical usage: parallel geometry generation, screen-

space divided parallel rendering
n Big limitation: screen image reassembly bandwidth

n Need multi-pipe custom image assembly hardware on 
front end

[Humphreys et al 02]

$$$!
$!
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Unconventional Parallel Rendering

n Greg Ward’s “ray cache”
n Parallel Radiance server 

renders and sends bundles 
of rays to client 

n Client interpolates 
available nearby rays to 
form image

[Mark 99]

[Ward 99]

n Bill Mark’s post-render 
warping
n Parallel server sends every 

N’th frame to client
n Client interpolates 

remaining frames by 
warping server frames 
according to depth
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Impostors

Fundamentals
Prior Work
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Impostors
n Replace 3D geometry 

with a 2D image
n Image an “impostor”

n 2D image fools viewer 
into thinking 3D 
geometry is still there

n Prior work
n Pompeii murals
n Trompe l’oeil (“trick of 

the eye”) painting style
n Theater/movie 

backdrops

n Main Limitation
n No parallax-- must 

update impostor as 
view changes

[Harnett 1886]
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Impostors : Idea

Camera

Impostor

Geometry
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Impostor Reuse
n We don’t need to redraw the impostors every frame

n If we did, impostors wouldn’t help!
n Can reuse impostors from frame to frame

n Can reuse forever under camera rotation
n Far away or flat impostors can be reused many 

times
n Assuming reasonable camera motion rate

Number of frames impostor can be reused, for various depth ranges (columns) and distances (rows)



24

Impostors  for Complex Scenes
n Use different 

impostors for 
different objects 
in scene
n Get some parallax 

even without 
updating

n Number of 
impostors can 
depend on 
viewpoint
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Parallel Impostors

Our Proposed Solution
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Parallel Impostors Technique
n Key observation: impostor images 

don’t depend on one another
n So render impostors in parallel!

n Uses the speed and memory of the 
parallel machine
• Fine grained-- lots of potential parallelism

n Geometry is partitioned by impostors
• No “shared model” assumption

n Reassemble world on serial client
n Uses rendering bandwidth of client 

graphics card
n Impostor reuse cuts required network 

bandwidth to client
• Only update images when necessary

n Impostors provide latency tolerance
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Client/Server Architecture

n Parallel machine can be anywhere on network
n Keeps the problem geometry
n Renders and ships new impostors as needed

n Impostors shipped using TCP/IP sockets 
n CCS & PUP protocol [Jyothi and Lawlor 04]

n Works over NAT/firewalled networks
n Client sits on user’s desk

n Sends server new viewpoints
n Receives and displays new impostors
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Client Architecture
n Latency tolerance: client never waits for server

n Displays existing impostors at fixed framerate
n Even if they’re out of date

n Prefers spatial error (due to out of date impostor) to 
temporal error (due to dropped frames)

n Implementation uses OpenGL for display
n Two separate kernel threads for network handling
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Server Architecture
n Server accepts a new viewpoint from client
n Decides which impostors to render
n Renders impostors in parallel
n Collects finished impostor images 
n Ships images to client

n Implementation uses Charm++ parallel 
runtime
n Different phases all run at once

n Overlaps everything, to avoid synchronization
n Trivial in Charm; virtually impossible in MPI

n Geometry represented by efficient migrateable 
objects called array elements [Lawlor and Kale 02]

n Geometry rendered in priority order
n Create/destroy array elements as impostor 

geometry is split/merged
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Architecture Analysis

B Delivered bandwidth (e.g., 300Mpixels/s)

BR Rendering bandwidth per processor (e.g., 1Mpixels/s/cpu)

P Parallel speedup (e.g., 30 effective cpus)

R Number of frames impostors are reused (e.g., 10 reuses)

BN Network bandwidth (e.g., 60 Mbytes/s)

CN Network compression rate (e.g., 0.5 pixels/byte)

BC Client rendering bandwidth (e.g., 300Mpixels/s)

Benefit from 
Parallelism

Benefit from 
Impostors
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Parallel Impostors Examples
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Parallel Particle Example
n Large particle dataset

n Decomposed using an octree

n Each octree leaf is:
n Responsible for a small subset of the 

particles
n Represented on server by one parallel 

array element
n Rendered into an impostor by its array 

element
• When the old impostor cannot be reused

n Drawn on client as a separate impostor
n Able to migrate between processors for 

load balance
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Parallel Particle Load Balancing
n Array elements can migrate between 

processors [Lawlor 03] for load balance
n Integrated with Charm++ automated load 

measurement and balancing system

After BalancingBefore Balancing Balancing
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Parallel Impostors Performance
n Parallel Impostors has high 

framerate and low L2 error

n Conventional screen shipping has 
low framerate and high L2 error

48 nodes of Hal cluster: 2-way 550MHz Pentium III nodes connected with fast ethernet
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Parallel Campus Example: Server
n Large terrain model decorated 

with geometry
n For example, each tree is
n Represented by one array element
n Rendered by that array element

• Only when onscreen and
• Only when old impostor cannot be 

reused (based on quality criteria)

n Able to migrate between processors 
for load balance
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Parallel Campus Example: Server
n Terrain ground texture is a 

dynamic quadtree
n Each quadtree leaf
n Represents one patch of ground
n Stores outlines of sidewalk, roads, 

grass, brick, etc. on ground
n Is represented by one array element

• Using array element bitvector indexing
n Renders an impostor ground texture 

for client as needed
n Divides into children if higher 

resolution is needed
• Creating new array elements
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Parallel Campus Example: Client
n Client traverses terrain model 

decorated with impostors
n Draws terrain and impostors in 

back-to-front order
n Does not expand offscreen parts of 

model (checks bounds at each step)

n Client can always draw some 
approximation of scene
n Latency (and latency variation) 

hiding
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New Features Enabled
by Parallel Impostors
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Parallel Impostors Enables...
n Only reason to do any of this is 

to make new things possible
n Showed how very large scenes 

can now be rendered
n 1 GB particle dataset

n Can now also do better 
rendering
n Fully antialiased geometry
n More accurate lighting
n Bigger more realistic databases
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Antialiasing Impostors
Antialiasing Textures
Antialiasing Geometry



41

Antialiasing Summary
n Textures are easy to antialias
n Hardware can do it easily

n Geometry is harder to antialias
n Hardware can’t do it easily today

n Impostors turn geometry into 
texture, but still must antialias 
geometry
n Can use any existing antialiasing 

method
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Aliasing: The Problem
Point sampling leads 

to “aliasing”

Tiny sub-pixel 
features show up 
(alias) as noise 
or large features

The texture on this 
infinite plane is 
sampled using 
the nearest pixel
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Texture Antialiasing via Mipmaps
Mipmapping 

[Williams 83] 
keeps a pyramid 
of coarser 
images, and 
selects a coarse 
enough image to 
eliminate aliases

This coarsening 
works, but 
causes excess 
blurring on tilted 
surfaces

Mipmapping is 
implemented on 
all modern 
graphics 
hardware
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Geometry Antialiasing
n Like texture pixels, objects can 

cover only part of a pixel
n E.g., for tiny objects
n Or along object boundaries

n Prior Work:
n Ignore partial coverage and 

point sample (standard!)
n Oversample and average

n Graphics hardware: FSAA
n Not theoretically correct; close

n Random point samples 
n [Cook, Porter, Carpenter 84]
n Needs a lot of samples:

n Use analytic technique
n Trapezoids
n Circles [Amanatides 84]
n Polynomial splines [McCool 95]
n Procedures [Carr & Hart 99]

Antialiased
filtering

Aliased 
point samples

n
σ

σ ='
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Geometry Antialiasing via Texture
n Texture map filtering is mature

n Very fast on graphics hardware
n Bilinear interpolation for nearby 

textures
n Mipmaps for distant textures
n Anisotropic filtering becoming 

available
n Works well with alpha channel 

transparency
[Haeberli & Segal 93]

n Impostors let us use texture 
map filtering on geometry
n Antialiased edges
n Mipmapped distant geometry
n Substantial improvement over 

ordinary polygon rendering

Antialiased
Impostor
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Antialiased Impostor Challenges
n Must generate antialiased 

impostors to start with
n Just pushes antialiasing up one 

level
n Can use any antialiasing 

technique.  We use:
n Trapezoid-based integration 
n Blended splats

n Must render with transparency
n Not compatible with Z-buffer
n Painter’s algorithm:

n Draw from back-to-front 
n A radix sort works well
n For terrain, can avoid sort 

by traversing terrain 
properly
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Ground Texture Antialiasing 
n Campus example, ground as simple texture
n Mipmaps are fast, but cause excessive blurring
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Ground Texture  Antialiasing
n Ground texture drawn from vector outlines using 

analytically antialiased trapezoids
n Chooses ground resolution to match screen
n Achieves high-quality anisotropic antialiasing
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Splat Aliasing
n Aliased splat geometry: lines break up and wobble
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Splat Antialiasing
n Antialiased splats: lines stay smooth and clean
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Penumbra Limit Map
for Soft Shadows
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Quality: Soft Shadows
n Extended light 

sources cast fuzzy 
shadows
n E.g., the sun

n Prior work
n Ignore fuzziness
n Point sample area 

source
n New faster 

methods 
[Hasenfratz 03 
survey]

n New method based 
on a discrete, easy-
to-parallelize shadow 
map
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P

Z

L
A

Z
P

2
1

2
1

+=
Fraction of 

light 
source  
visible

(exact)

Penumbra Limit Shadows
n Main Contribution: new method physically correct
n New method very interpolation-friendly

n Penumbra limit values (green) are planar
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Large Models
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Scale: Kilometers
n World is really big

n Modeling it by 
hand is painful!

n But databases exist
n USGS Elevation
n GIS Maps
n Aerial photos

n So extract detail 
from existing 
sources
n Leverage existing 

manual labor
n Gives reality, which 

is useful
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Practical Difficulties
n Map projections

n UTM, ILCS 
n Curvature of Earth

n Undocumented and 
bizarre formats

n Formats designed 
for 2D; need 3D
n Extrusion

n Inconsistencies
n 1997 vs 2004

n Still much easier 
than by hand...
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Terrain Traversal
n Cannot simply dump all terrain 

geometry into graphics card
n Too many polygons

n Must simplify terrain geometry 
during traversal
n But must preserve fidelity
n View-dependent level of detail

n Standard method [Lindstrom 03] 
n With a few minor improvements 
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Terrain Decomposition
n Terrain level-of-detail: expand until screen error 

drops below threshold



60

Terrain Decomposition
n Lindstrom terrain: split quads at even/odd levels
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Terrain Decomposition
n Optimized terrain: split quads along lower-error axis
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Terrain Painter’s Algorithm
n Conventional Z-buffer terrain 

can be extracted in arbitrary 
order

n But painter’s algorithm requires 
strict back-to-front rendering
n So recursively traverse terrain in 

back-to-front order
n Expand children in back-to-front 

order 
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Terrain Painter’s Algorithm
n Extreme Wideangle shot of Denali Nat’l Park
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Terrain Painter’s Algorithm
n Colored by traversal order
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Roof Extrusion
n Only have building outlines, not details of roof 

topology or even height
n Must synthesize plausible roof shape for 

hundreds of buildings
n Building outlines contain lots of colinearity and 

other degeneracies!
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Roof Extrusion
n New (?) triangulation based on Voronoi diagram

n Triangulates medial axis and outline
n Plausible approximation of real roofs

n Medial axis approximately follows ridgeline
n Special “cell edges” run downslope, can highlight 

to draw water channels
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Roof Extrusion
n Procedure is fast and robust

n Built on Fortune’s sweepline algorithm
n Works for all campus buildings without problems
n Simplify resulting roof mesh using quadric 

simplification [Garland 97]
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Contributions and 
Conclusions
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Contributions: Parallel Computing
n Charm++ Array Manager

n Parallel migratable objects support
• Scalable Creation, deletion, messaging, migration
• Used here to represent chunk of geometry for impostor 

rendering
n Collectives with migration [Lawlor 03]

• Used here to distribute new viewpoints to impostors

n Charm++ PUP Framework
n Introspection for C++ objects
n Complex cross-platform communication protocols made 

easy [Jyothi and Lawlor 04]
n Used here for impostors:

• To/from disk files (scene I/O)
• To client from server
• Between processors of parallel machine for load balance

n CCS Protocol
n Fast, portable network connection to parallel machines 

[Jyothi and Lawlor 04]
n Works even with both ends behind firewalls or NAT
n Used here to connect parallel impostor server to client
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Contributions: Parallel Rendering
n Parallel Impostors technique for
n Additional rendering power

• More geometry per frame
• Better rendering algorithms
• Quality antialiasing

n Improved bandwidth usage
• Impostor reuse cuts required 

bandwidth

n Increased latency tolerance
• Client can always draw next frame 

using existing impostors
• No dropped frames from network 

glitches
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Contributions: Quality Rendering
n Techniques for
n Antialiased geometry

• Analytic filtering and smooth splats

n Quality lighting
• Soft shadows via Penumbra Limit Maps
• Global illumination via Impostor GI

n Large worlds
• GIS and Terrain tweaks

n Procedural geometry generation
• IFS Bounding [Lawlor and Hart 03]

n Cost of these techniques is 
affordable with Parallel 
Impostors
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Total Lines of Code
n Conservative total of 63K lines of C++ code (with some C)

n Parallel-Rendering specific: 16K lines 
n 9K  Rendering and IFS support (for campus model)
n 3K  LiveViz3d server library    (parallel impostors)
n 1K  LiveViz2d server library (screen shipping)
n 1K  Campus server code 
n 1K  Campus client library 
n 1K  Campus building assembly 

n Graphics Infrastructure: 31K lines
n 10K 2D antialiased rendering library
n 8K  Matrix, vector, and other math
n 6K  PostScript interpreter
n 3K  Terrain system 
n 3K  Geospatial/map libraries 
n 1K  Raytracer library

n Parallel Infrastructure: 16K+ lines (CVS: 47K)
n 4K Array Manager
n 4K Common data structures 
n 3K PUP Framework 
n 2.5K CCS Protocol

nUnrelated UIUC code: 25K lines

n7K  FEM Framework 

n4K  CSAR Remeshing

n3K NetFEM client and server 

n3K  Data transfer library

n2.5K Collision library

n2K Multiblock framework 

n1.5K TCharm library

n1.5K  CSAR Makeflo
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Future Work
n Camera motion prediction
n Impostor prefetching

n Multi-impostor interpolation
n Lightfield-style direction capture

n Fully hierarchical traversal
n Split down to leaf and branch

n Integration with Impostor 
Global Illumination

http://charm.cs.uiuc.edu/users/olawlor/academic/thesis/
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Backup Slides
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Demo
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Campus with Pure OpenGL
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Campus with Parallel Impostors
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Impostor Frames
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Importance of Computer Graphics
n “The purpose of computing is insight, 

not numbers!” R. Hamming

n Vision is a key tool for analyzing and 
understanding the world

n Your eyes are your brain’s highest 
bandwidth input device
n Vision: >300MB/s 

• 1600x1200 24-bit 60Hz
n Sound: <1 MB/s

• 96KHz 24-bit stereo

n Touch: <100 per second
n Smell/taste: <10 per second

n Plus, it looks really cool...
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Impostor Global Illumination



81

Quality: Global Illumination
n Light bounces between 

objects (color bleeding)
n Everything is a 

distributed light source!
n Prior work

n Ignore extra light
n “Flat” look

n Radiosity
n Photon Mapping
n Irradiance volume 

[Greger 98]
n Spherical harmonic 

transfer functions
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Impostor Global Illumination
Sweep plane 

through scene, 
accumulating 
light from objects

Identical to 
standard
voxel/cubemap 
parameterization, 
but much faster 
to compute

Allows geometry to 
be filtered during 
sweep
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Complex Geometry
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Detail: Complicated Geometry
n World’s shape is 

complicated
n But lots of 

repetition
n So use 

subroutines to 
capture 
repetition

[Prusinkiewicz, 
Hart]
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Demo in 3D

IFS Bounding
[Lawlor and Hart 03]
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Software vs. Hardware 
Rendering Rate
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Rendering Time for Tree

Level-of-Detail (LOD) jumps

Software becomes 
fillrate bound

CPU: 2.2 GHz Athlon64

GPU: nVidia GeForce 6800



88

Rendering Time per Pixel for Tree

CPU: 2.2 GHz Athlon64

GPU: nVidia GeForce 6800
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Roof Extrusion Details
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Roof Extrusion Steps
n Start with 

building outline
n Discretize 

outline into 
small pieces 
(20cm)
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Roof Extrusion Steps
n Compute 

Voronoi 
diagram of 
discretized 
outline

n Keep Voronoi 
vertices 
(center) and 
edges (green)

n Voronoi 
diagram 
approximates 
medial axis of 
building 
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Roof Extrusion Steps
n For Voronoi 

edges that cross 
the old outline,  
delete the edge 
and connect the 
corresponding
Voronoi vertices 
to their 
controlling set 
points using new 
edges (blue)

n The new edges 
cannot cross, 
because Voronoi 
cells are convex
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Roof Extrusion Steps
n Remove Voronoi 

vertices that go 
outside the set

n Add Voronoi 
edges (red) to 
corner vertices 
(needed for 
acute corners)

n Result is a 
triangulation of 
the roof outline 
and medial axis

n Can now 
extrude to 3D 
and simplify
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Roof Extrusion
n Procedure is fast and robust
n Worked for all campus buildings without problems


