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Abstract

Existence and regularity of steady and unsteady solutions of a PDE describing the mo-
tion of a prototypical incompressible fluid with shear dependent viscosity are studied.
The regularity theory is approached by studying the associated elliptic operator. A
summary of the classical technique of difference quotients applied to non-linear el-
liptic systems is given by applying it to the elliptic system associated with a vector
Burgers-like system. Interior regularity is proved for a general class of Stokes-like
elliptic operators using a new solenoidal test function that permits the application dif-
ference quotient methods to systems with a divergence free constraint. Existence for
steady solutions of the incompressible fluid PDE is proven; interior regularity follows
immediately from regularity of the Stokes-like elliptic system. Existence and interior
regularity for time dependent solutions are proven.
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Chapter 1

Introduction

In this thesis we study an incompressible fluid with equation of motion

ut + u · ∇u = −∇π + 2 div((ν1 + ν2|Du|2)Du) + f

div u = 0 (1.1)

u|∂Ω = 0

where Du is the symmetric part of the gradient of u. For simplicity, we will work on a

bounded domain Ω contained in R3. Our primary goal is to investigate the regularity

of solutions of this equation, and to do this we focus on the regularity of the associated

nonlinear Stokes-like system

−2 div((ν1 + ν2|Du|2)Du) = −∇π + f

div u = 0 (1.2)

u|∂Ω = 0.

We are motivated to study (1.1) for several reasons. Of course, this is a physical model

and exhibits so-called “shear thickening” effects seen in some non-Newtonian fluids.

However, this is only a specific case of a general class of fluids with power law type

Cauchy stress tensors

Tij = 2(ν1 + ν2|Du|q)Diju

1



Chapter 1. Introduction

which are themselves a specific case of models with stress tensors satisfying Stoke’s

hypothesis on the stress-strain relationship,

Tij = f1(|Du|, detDu)Diju + f2(|Du|, detDu)
[

Du2
]

ij
.

On the other hand, the specific model is associated with the Smagorinsky turbulence

model [Sma63]. For a uniform mesh with mesh size h this model can be written with

stress tensor

2ν1(1 + h2|Du|2)Diju

which is obviously related to the model studied in this thesis. Most importantly, the

reason for addressing a prototypical problem is that we can focus on the real difficul-

ties of the regularity theory without worrying about being bogged down in details

required for generalization. Since we will not be able to come up with a complete reg-

ularity theory in the end, it does not appear to be a large loss to use a specific model

with a structure that is particularly amenable to analysis. Indeed, the nagging open

questions of regularity for nonlinear elliptic systems are especially clear and troubling

for the model (1.2). Since the viscosity of this fluid is (ν1 + ν2|Du|2), we see that the

viscosity increases wherever Du does, and we would expect that the larger viscosity

would then act to damp Du at those places where it is large. Thus we can imagine

this as some sort of self-governing fluid and we would expect solutions to exhibit at

least the regularity properties of solutions of the Navier-Stokes equations. In particu-

lar, in smooth domains with smooth forces we should be able to prove the existence of

classical solutions, at least on some time interval (0, T ). The fact of the matter is that

regularity theory for nonlinear elliptic and parabolic systems (and so also this thesis)

is currently unable to address this question, even without the added complications

of the solenoidal constraint considered here. With classical solutions as an end-goal,

it seems unnecessary to focus too heavily on generalizations when we cannot even

obtain desired answers for the specific case.

2



Chapter 1. Introduction

Our hope is that the arguments used in this thesis would be accessible to a reader with

a basic functional analysis background as well as some familiarity Sobolev spaces and

the spaces of divergence free functions such as can be found in a cursory reading of

Chapters II and III of [Gal94]. Whenever possible we have chosen to use a simple

argument rather than a more complicated, though perhaps more powerful, one par-

ticularly when the underlying principle is the same. For example, in addressing the

existence of solutions of (1.2) we have chosen to use the easily proven fact that if uk

converges weakly to u, then ‖u‖ ≤ limk ‖uk‖ rather than the more general principle of

weak lower semicontinuity of convex functionals.

The structure of the thesis is as follows. In Chapter 2 we prove the existence and

uniqueness of weak solutions of (1.2). We introduce the pressure in this Chapter and

point out the surprising features of its apparent irregularity. From this we move on

in Chapter 3 to a review of how the classical technique of difference quotients can be

applied to the study of the related non-linear “vector-Burgers-like” system

− div((ν1 + ν2|∇u|2)∇u) = f

u|∂Ω = 0.
(1.3)

We do this for two reasons. First, it provides the reader with an introduction to the

application of difference quotient techniques to non-linear systems, particularly those

with growth condition different from the Laplacian and Stokes systems (i.e. growth

condition (1.5) below with p > 2). More importantly, it illustrates why these tech-

niques cannot be applied to systems with solenoidal condition directly and it there-

fore provides context for the new results in Chapter 4 which form the center-piece of

the thesis. Building on the intuition developed in Chapter 3, we prove in Chapter 4

our fundamental regularity result for (1.2). We show that if f is in L2(Ω) then the weak

solution of (1.2) has second derivatives locally in L2. Actually, we prove more than

3



Chapter 1. Introduction

this. If T is a C1 function mapping Rn×n
symm to Rn×n

symm such that for some p ≥ 2

∂klTij(A)BijBkl ≥ c1(1 + |A|p−2)|B|2 (1.4)

|∂klTij(A)| ≤ c2(1 + |A|p−2) (1.5)

for all symmetric n dimensional matrices A and B, we prove that weak solutions of

the system

− div T(Du) = −∇π + f

div u = 0

u|∂Ω = 0

have second derivatives locally in L2. To do this we introduce a new test function

that allows difference quotient techniques to be extended to system (1.2) and related

systems. We have chosen to violate in this Chapter our avoidance of generality for a

couple of reasons. Firstly, the arguments to get the general proof are no different from

those for the specific case, save for some preliminary lemmas that are well motivated

by our work in Chapter 3. So we do little extra work to get the stronger result. Also,

the conditions (1.4) and (1.5) are easily seen to be analogous to those of ellipticity and

growth standard in the theory of elliptic equations and systems. Thus we see that

the result is a genuine extension of the theory of difference quotients to non-linear

elliptic systems with solenoidal constraint. When presented in this context, not only

is the technique new, but it also provides an extension of the class of stress tensors

T for which we have regularity results. Therefore it seems appropriate to exhibit the

stronger theorem. In Chapter 5 we apply the interior regularity result of Chapter 4

to steady and unsteady solutions of 1.1. Let Ω′ be any open subset of Ω with closure

contained in Ω. In the steady case, we prove the existence of solutions and show that

every steady solution with f in L2(Ω) has second derivatives inL2(Ω′) . In the unsteady

case we show that if the initial velocity is solenoidal and in L2(Ω) and if the forcing

term f is in L2(Ω × [0, T ]) then there exists a unique solution u with second spatial

4



Chapter 1. Introduction

derivatives in L2(Ω′ × [0, T ]) and that tu has a time derivative in L2(Ω × [0, T ]). The

proof avoids the technical arguments required for existence proofs of weak solutions.

Instead, we are motivated by the existence proof for Navier-Stokes equations [Hey80]

wherein the existence of regular solutions is proven directly rather than proving weak

solutions exist and then examining their regularity. In the end, though, we do not get

particularly regular solutions for (1.1) (and certainly not classical ones) and so we are

only motivated by some of the preliminary ideas of [Hey80].

The regularity of the motion of an incompressible fluid evolving according to (1.1) has

been studied since the pioneering work of Ladyzhenskaya. For a class of fluids includ-

ing those modeled by (1.1) she showed the unique existence of weak solutions, in con-

trast to the Navier-Stokes equations for which such a result is not yet known in three

dimensions. In the steady case, one can find in the work of Giaquinta and Modica

[GM82] results concerning the almost-everywhere Hölder continuity of the gradients

of solutions of a class of equations similar to (1.2), except these equations have growth

property of the type (1.5) with p = 2 only and therefore do not exhibit the difficulties

associated with the pressure we shall see later. There is a technique in [MNRR96] for

the unsteady case that when applied to the Stokes-like system seems likely to giveW 2,2
loc

solutions as well as some form of boundary regularity. However, these calculations

have not yet been done and would apply directly only in the case that T were derived

from a potential, by which we mean Tij(Du) = ∂ijF (|Du|2) for some scalar function

F . For the unsteady problem we have recent work [MNR93] [BBN94] [MNRR96] in

the case of periodic boundary conditions wherein the global existence of regular so-

lutions with second derivatives in L2(Ω × [0, T ]) are proven for a class of equations

including (1.1). For Dirichlet boundary conditions, new difficulties appear, as seen in

Chapter 4, and the known results are more sketchy. We have an existence proof of

classical solutions for small data from Amann [Ama94]. For large data, there is an ex-
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Chapter 1. Introduction

istence proof in [MNR96] of regular solutions, i.e. L2(0, T ;W 2,4/3(Ω)). The techniques

of our proof are different from those in [MNR96], so we obtain a different perspective

on the solutions. For example, our proof makes explicit the property that the second

derivatives are in in L2(0, T ;W 2,2(Ω′)) for open sets Ω′ with closure contained in Ω. We

have then made apparent the troubling question of whether singularities of type L
4
3

occur in the second derivatives at the boundary. Also, when take in the context of a

generalized stress tensor T, our existence proof extends in some respects the results of

[MNR96]. The extension of the results of Chapter 4 to the generalized case is taken up

in [Max97]. We should ephasize here, though, that since we do not obtain boundary

regularity we do not fully recover the results of [MNR96].

1.1 Notation

We end our introductory remarks by outlining our notation. We will use ∇ to denote

the gradient operator and D the symmetric part of the gradient. That is, Du has com-

ponents (Du)ij = Diju = 1
2
(∂iuj + ∂jui). If f is a function defined on square matrices,

we will write ∂ijf to mean the derivative with respect to the ith,jth component of its

argument.

Let {ek}n
k=1 denote the standard basis of Rn. For any function f defined on Rn we

define τh,sf(x) to be the difference quotient f(x+hes)−f(x)
h

. In addition to difference

quotients, we will have occasion to use a smearing operator σh,s defined by σh,sf(x) =
∫ 1

0
f(x + thes) dt. In all that follows we will use the usual Einstein summation no-

tation with the exception that indices appearing in the operators τ and σ should not

be summed unless this is written explicitly. Therefore, τ−h,jτh,ju would not denote a

difference quotient “Laplacian”, but
∑

j τ−h,jτh,ju would.

IfX is a Banach space, we will use | · | to denote its norm if it is finite dimensional, || · ||

6



Chapter 1. Introduction

if it is L2, || · ||p if it is Lp and || · ||X otherwise. Also, we will use the generic notation

X∗ to mean the dual of X . We use 〈f, v〉 to denote the value of the functional f taken

at v. In the case of L2, we use (·, ·) to denote the inner product.

We denote by W n,p(Ω) the usual Sobolev space with W n,p
0 (Ω) the subspace generated

by taking the closure in W n,p(Ω) of C∞
0 (Ω), the set of smooth functions with compact

support. Let J (Ω) denote the subset of C∞
0 (Ω) that are also divergence free (we will

not make distinction between spaces of scalar and vector valued functions as this will

always be clear from the context). Let Jn,p
0 (Ω) denote the closure of J (Ω) in W n,p

0 (Ω). 1

We will simply write Jp for J0,p
0 and J for J2. While our notation for divergence free

spaces is not traditional, it is hopefully both consistent and clear.

If Ω is an open subset of Rn and 0 < δ < T we write ΩT and Ω[δ,T ] to denote the

time cylinders Ω × [0, T ] and Ω × [δ, T ] respectively. We use the standard notation for

Bochner spaces. If f ∈ Lp(0, T ;X) then
∫ T

0
||f ||pX dt < ∞. We identify Lp(0, T ;Lp(Ω))

with Lp(ΩT ).

1Since we will always work on a bounded domain in this document, we need not worry about
the troubles that arise from this definition in unbounded domains.

7



Chapter 2

Weak Solutions of the Stokes-like
System

2.1 Existence and Uniqueness

In this section, we shall concern ourselves with the nonlinear elliptic system of equa-

tions defined on Ω, a bounded open set in Rn, namely

−2∂j

((

ν1 + ν2 |Du|2
)

Diju
)

= ∂iπ + fi

∂iui = 0

u|∂Ω = 0.

(2.1)

If f is in
(

J1,4
0

)∗
, we define a weak solution of (2.1) to be a function u in J1,4

0 such that
∫

Ω

2(ν1 + ν2 |Du|2)Diju∂jφi = 〈f , φ〉 (2.2)

for all solenoidal φ in C∞
0 (Ω). It is clear by simple integration by parts that any suf-

ficiently smooth solution of (2.1) is also a weak solution. Moreover, for any fixed

u ∈ J1,4
0 we obtain from Hölder’s inequality that for every φ in J (Ω),

∣

∣

∣

∣

∫

Ω

2(ν1 + ν2 |Du|2)Diju∂iφj dx − 〈f , φ〉
∣

∣

∣

∣

≤ 2ν1 |Ω|
1
2 ||Du||L4||φ||J1,4

0
+

+ 2ν2||Du||3L4||φ||J1,4
0

+ ||f ||(J1,4
0 )

∗||φ||J1,4
0

≤
(

2ν1 |Ω|
1
2 ||Du||L4 + 2ν2||Du||3L4+

+ ||f ||(J1,4
0 )

∗

)

||φ||J1,4
0
.

8



Chapter 2. Weak Solutions of the Stokes-like System

Since solenoidal C∞
0 functions are dense in J1,4

0 , it follows that for fixed u the integral

in (2.2) defines a continuous linear functional on φ ∈ J1,4
0 . In particular, if u is a weak

solution, then
∫

Ω

2(ν1 + ν2 |Du|2)Diju∂jvi dx − 〈f ,v〉 = 0 (2.3)

for all v ∈ J1,4
0 .

To investigate the solubility of (2.2) we will consider the functional on J1,4
0 defined by

F(u) =

∫

Ω

ν1 |Du|2 +
ν2

2
|Du|4 dx − 〈f ,u〉 (2.4)

That F is well defined on J1,4
0 is clear since

|F(u)| ≤
∫

Ω

ν1 |Du|2 +
ν2

2
|Du|4 dx + |〈f ,u〉|

≤
∫

Ω

ν1 |∇u|2 +
ν2

2
|∇u|4 dx + ||f ||(J1,4

0 )
∗||u||J1,4

0

≤ ν1 |Ω|
1
2 ||u||2

J1,4
0

+
ν2

2
||u||4

J1,4
0

+ ||f ||(J1,4
0 )

∗||u||J1,4
0
.

We now apply the theory of variational integrals to the functional F to obtain the

existence of a minimizer for F . Since critical points of F are shown to be solutions of

(2.2) we will have in hand the existence of a weak solution. Moreover, by using the

simple form of F , we will be able to prove these things without calling directly upon

the standard results concerning weak upper semi-continuous functionals.

As is usual, we define a critical point of F to be a function u in J1,4
0 such that for any

v in J1,4
0 , d

ds
F(u + sv)

∣

∣

s=0
= 0. Since F(u + sv) is just a polynomial in s, we can easily

compute the derivative of F(u + sv) with respect to s and evaluate it at s = 0. Doing

this yields

d

ds
F(u + sv)

∣

∣

∣

∣

s=0

=

∫

Ω

2(ν1 + ν2 |Du|2)DijuDijv dx − 〈f ,v〉

=

∫

Ω

2(ν1 + ν2 |Du|2)Diju∂ivj dx − 〈f ,v〉 (2.5)

9



Chapter 2. Weak Solutions of the Stokes-like System

where we arrived at the last line using the fact that if A is a symmetric matrix and B is

an anti-symmetric matrix, AijBij = 0. It its clear from (2.5) that a critical point is weak

solution.

Suppose F has a minimizer u. We now show that u is a critical point of F , and there-

fore a weak solution. If v is any other element of J1,4
0 , then F(u + sv) is a fourth order

polynomial in s; call it r(s). Since u is a minimizer, r(0) ≤ r(s) for all s. Thus, r′(0) = 0,

which can be written as d
ds
F(u + sv)

∣

∣

s=0
= 0. Since v is arbitrary, u is a critical point.

Given what we have just seen, to show existence of a weak solution it would be suffi-

cient to show existence of a minimizer. This is what we turn to now.

First, we will show that F is coercive and bounded below. To do this, we split the

domain of F into two regions, one wherein the term 〈f ,u〉 is dominant and the re-

mainder of the space where this term in subordinate. We will need to use a case of

the Korn inequality proved, for example, in [Neč66]: for u ∈ J1,4
0 , there is a constant

k(Ω) > 0 such that ||u||J1,4
0

≤ k(Ω)||Du||L4 .

Let us now consider the case where 〈f ,u〉 is subordinate. Suppose

||u||3
J1,4
0

≥ k(Ω)

ν2

(

||f ||(J1,4
0 )

∗ + γ
)

where γ ≥ 0 will be determined later. Then

F(u) =

∫

Ω

ν1 |Du|2 +
ν2

2
|Du|4 dx − 〈f ,u〉 dx

≥ ν2

2
||Du||4L4 − ||u||J1,4

0
||f ||(J1,4

0 )
∗

≥ ν2

2k(Ω)4
||u||4

J1,4
0

− ||u||J1,4
0
||f ||(J1,4

0 )
∗

≥
(

ν2

2k(Ω)4
||u||3

J1,4
0

− ||f ||(J1,4
0 )

∗

)

||u||J1,4
0

≥ γ||u||J1,4
0

10



Chapter 2. Weak Solutions of the Stokes-like System

Taking γ = 1 gives us the desired coercivity. Taking γ = 0 we have shown that F

is non-negative when ||u||3
J1,4
0

≥ 2k(Ω)4

ν2
||f ||(J1,4

0 )
∗ . Now we find a lower bound when

||u||3
J1,4
0

< 2k(Ω)4

ν2
||f ||(J1,4

0 )
∗ by neglecting the positive terms in F to get

F(u) =

∫

Ω

ν1 |Du|2 +
ν2

2
|Du|4 dx − 〈f ,u〉

≥ − 〈f ,u〉

≥ −||u||J1,4
0
||f ||(J1,4

0 )
∗

≥ −
(

2k(Ω)4

ν2

)
1
3

||f ||
4
3

(J1,4
0 )

∗

Thus we have obtained that F is bounded below by −
(

2k(Ω)4

ν2

)
1
3 ||f ||

4
3

(J1,4
0 )

∗ .

We are now able to find a minimizer for F . Since F is bounded below, there exists

a sequence un of terms in J1,4
0 such that F(un) → inf

v∈J1,4
0

F(v). By coercivity, the

sequence is bounded in J1,4
0 and so converges weakly in J1,4

0 to some u. We now show

that F(u) is the minimal value for F .

Recall from elementary functional analysis that if un converges weakly to u in a Ba-

nach spaceB, then lim infn→∞ ||un||B ≥ ||u||B. Since ||Du||L4 ≤ ||u||J1,4
0

≤ k(Ω)||Du||L4 ,

as cited before, we can take ||D · ||L4 as the norm on J1,4
0 . Since {un} converges weakly

to u in J1,4
0 we have lim infn→∞ ||Dun||L4 ≥ ||Du||L4 . Also, since Ω is bounded and un

converges weakly to u in J1,4
0 , it also converges weakly to u in J1,2

0 . We can easily see

by a couple of integrations by parts that ||Du||L2 = ||u||J1,2
0

. So, lim infn→∞ ||Dun||L2 ≥

||Du||L2 . Using these fact together with the weak continuity of linear functionals it

11



Chapter 2. Weak Solutions of the Stokes-like System

follows that

inf
v∈J1,4

0

F(v) = lim
n→∞

F(un)

= lim
n→∞

∫

Ω

ν1 |Dun|2 +
ν2

2
|Dun|4 dx − 〈f ,un〉

= lim
n→∞

∫

Ω

ν1 |Dun|2 +
ν2

2
|Dun|4 dx − 〈f ,u〉

≥ ν1 lim inf
n→∞

||Dun||2L2 +
ν2

2
lim inf
n→∞

||Dun||4L4 dx − 〈f ,u〉

≥ ν1||Du||2L2 +
ν2

2
||Du||4L4 dx − 〈f ,u〉

= F(u).

Thus u is in fact a minimizer for our functional and a weak solution of (2.2).

The uniqueness of weak solutions follow from the convexity and smoothness of the

functional F . We can show this in an elementary way using finite dimensional argu-

ments.

Suppose u1 and u2 are two distinct weak solutions of (2.2). Then F(su1 + (1− s)u2) is

a fourth order polynomial in s, call it r(s), with derivatives

r′(s) =

∫

Ω

2ν1Dij

(

su1 + (1 − s)u2
)

Dij(u
1 − u2)+

+ 2ν2

∣

∣D
(

su1 + (1 − s)u2
)
∣

∣

2
Dij

(

su1 + (1 − s)u2
)

Dij(u
1 − u2) dx−

−
〈

f ,
(

u1 − u2
)〉

(2.6)

and

r′′(s) =

∫

Ω

2ν1

∣

∣D
(

u1 − u2
)
∣

∣

2
+ 4ν2

∣

∣Dij

(

su1 + (1 − s)u2
)

Dij(u
1 − u2)

∣

∣

2
+

+ 2ν2

∣

∣D
(

su1 + (1 − s)u2
)
∣

∣

2 ∣
∣D(u1 − u2)

∣

∣

2
dx

> 0. (2.7)

12



Chapter 2. Weak Solutions of the Stokes-like System

From equation (2.6) using (2.3) we obtain

r′(0) =

∫

Ω

2ν1Diju
2Dij(u

1 − u2) + 2ν2

∣

∣Du2
∣

∣

2
Diju

2Dij(u
1 − u2) dx−

〈

f ,
(

u1 − u2
)〉

= 0,

and

r′(1) =

∫

Ω

2ν1Diju
1Dij(u

1 − u2) + 2ν2

∣

∣Du1
∣

∣

2
Diju

1Dij(u
1 − u2) dx−

〈

f ,
(

u1 − u2
)〉

= 0.

By the Mean Value Theorem, then, there is an s0 in (0, 1) with r′′(s0) = 0. This con-

tradicts the positivity of r′′ as shown in (2.7). Thus there can be at most one weak

solution. The results of this and the previous section can be summarized in the fol-

lowing theorem.

Theorem 2.1 Let Ω be a bounded open subset of Rn and f be in
(

J1,4
0

)∗
(Ω). Then there exists

a unique u ∈ J1,4
0 such that:

∫

Ω

2(ν1 + ν2 |Du|2)DijuDijv dx = 〈f ,v〉

for all v ∈ J1,4
0 . Moreover, there is a constant c(Ω) such that

||u||J1,4
0

≤ c(Ω)

(

1

ν2
||f ||(J1,4

0 )
∗

)
1
3

.

The final estimate of the theorem is easily derived:

ν22k(Ω)||u||4
J1,4
0

≤ 2ν2||Du||4L4

≤
∫

Ω

2(ν1 + ν2 |Du|2)DijuDiju dx

=

∫

Ω

2(ν1 + ν2 |Du|2)Diju∂iuj dx

= 〈f ,u〉

≤ ||f ||(J1,4
0 )

∗ ||u||J1,4
0
.

13



Chapter 2. Weak Solutions of the Stokes-like System

2.2 Existence of a Pressure

Until now, we have not discussed the pressure which appears in (2.1) but not in the

weak formulation. However, using standard results from Navier-Stokes theory we

can show a reformulation of the weak formulation in which it appears.

Given any f ∈
(

J1,4
0

)∗
we have, since J1,4

0 is a closed subspace of W 1,4
0 with the same

norm, that

||f ||(J1,4
0 )

∗ = sup
u∈J1,4

0

〈f ,u〉
||u||J1,4

0

= sup
u∈J1,4

0

〈f ,u〉
||u||W 1,4

0

.

By the Hahn-Banach theorem there exists f̃ ∈
(

W 1,4
0

)∗
such that its restriction to J1,4

0 is

just f .

Let u be the weak solution of (2.2) for a given f and let f̃ be an extension as described

above. Then the linear functional L on W 1,4
0 defined by

L(v) =

∫

Ω

2(ν1 + ν2 |Du|2)Diju∂jvi dx −
〈

f̃ ,v
〉

is continuous. From (2.2) we see that L(v) = 0 on J1,4
0 . It is well known, see for

example [Gal94], that every continuous linear functional on W 1,4
0 vanishing on J1,4

0

has a representation of the form

∫

Ω

π (∇ · v) dx

for some function π ∈ L
4
3 such that

∫

Ω
π dx = 0. So we are assured that there exists a

function π ∈ L
4
3 such that

∫

Ω

2(ν1 + ν2 |Du|2)Diju∂jvi + π (∇ · v) dx− 〈f ,v〉 = 0 (2.8)

14



Chapter 2. Weak Solutions of the Stokes-like System

for all v ∈W 1,4
0 .

At this point we should point out a significant difference between weak solutions

of the Stokes system proper and the nonlinear Stokes-like system considered here.

The weak solution of the Stokes system is found in the space W 1,2
0 (Ω) which is a

larger space than the one containing solutions of the nonlinear system, J1,4
0 . This

phenomenon is what allows us, for example, to show unique weak solutions of the

non-steady system (1.1). However, the pressure for the Stokes system lies in L2(Ω) as

opposed to the pressure appearing in the nonlinear system which lies in L
4
3 (Ω). Thus

the pressure in the nonlinear system apparently comes from a less regular space. All

of this arises from balancing terms in the weak formulation. If u is an an arbitrary

element of J1,4
0 (Ω), then 2(ν1 + ν2 |Du|2)Diju is in L

4
3 . So we cannot expect that π with

which it is balanced lies in any smaller space. This balancing also allows us to have

right hand sides f to be in
(

J1,4
0

)∗
which is in a bigger space than the one containing

right hand sides for the Stokes system,
(

J1,2
0

)∗
. Indeed, since we normally specify f to

obtain u, we can see that the less regular pressure is related to the fact that we are able

to specify a less regular right hand side. The structure of the PDE determines spaces

in which both solutions and legitimate right hand sides can be found.

The less regular space that contains the pressure becomes significant later on when

we attempt to prove regularity for solutions of system (2.1). It turns out that a natural

way to prove regularity for the Stokes system [SŠ73] relies heavily that the pressure

does not live in any worse a space than L2. Therefore, we will not be able to extend

these ideas to the nonlinear Stokes-like system. Indeed, in the end we will obtain

regularity only by avoiding the pressure completely. However, before we do this,

we first study how classical techniques are applied to a model system similar to the

nonlinear Stokes-like system.
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Chapter 3

Existence of Second Derivatives for a
Model System

In this Chapter we will examine the system:

−∂j

((

ν1 + ν2 |∇u|2
)

∂jui

)

= fi

u|∂Ω = 0
(3.1)

It is obviously similar to that studied in Chapter 2 , and we will use it as a model to

investigate how to prove regularity for the nonlinear Stokes-like system (2.1). There

are two differences between the model, which we shall call the nonlinear Poisson-like

system, and the nonlinear Stokes-like system. Firstly, we have relaxed the constraint

that solutions be solenoidal. This, in turn, increases the set of test functions to work

with in the variational formulation. Secondly, we have replaced occurrences of the

deformation tensor with the gradient tensor. This is necessary to preserve the nature

of the nonlinearity; we want it to force solutions to be in W 1,4
0 , just as in Chapter 2 .

By similar techniques as used in Chapter 2 we can show that if f ∈
(

W 1,4
0

)∗
there exists

a unique weak solution u ∈W 1,4
0 of (3.1), i.e. a function u ∈W 1,4

0 that satisfies

∫

Ω

(

ν1 + ν2 |∇u|2
)

∂iuj∂iφj dx = 〈f , φ〉 (3.2)

for all φ ∈ C∞
0 (Ω). We have the following estimate for the size of such a solution:

||u||W 1,4
0

≤
(

c(Ω)

ν2

||f ||(W 1,4
0 )

∗

)
1
3

. (3.3)
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Chapter 3. Existence of Second Derivatives for a Model System

We now want to show that we have some greater regularity of the solution if we

assume some greater regularity from f . In particular, we will assume that f ∈ L2.

The techniques and results in this Chapter are not new. For example, the ideas we

are about to use can be found in standard texts: for elliptic equations in [LU68] and

for elliptic systems in [Neč83]. Actually, the structure of the system allows us to treat

the system in the same fashion as an elliptic equation. We use the structure further

to prove results directly with the idea of motivating the generalizations to come in

Chapter 4 . Moreover, the intrinsic calculations are more complicated for the Stokes-

like system and it will be useful to see the preliminary ideas in an isolated context.

We will show in this Chapter how the theory of difference quotients can be used to

attack nonlinear problems. By seeing how the standard theory works in this case,

we will also be able to see how its direct application fails in the case of the nonlinear

Stokes-like system and therefore why the results of Chapter 4 are interesting.

3.1 Difference Quotients

It seems reasonable at this point to give a very brief recollection of the fundamentals

of difference quotients. The proofs of these results are well known and can be found,

for example, in [Gia93]. Given a function g on R3, let τh,m(g) denote the quantity

g(x + hem) − g(x)

h
.

If g is defined on our bounded set Ω, we extend for simplicity g by 0 to R3 to define

the difference quotient in this case. Naturally the difference quotient in some sense

approximates the derivative of a function. This intuition can be made rigorous as is

seen by the following Lemma.

Lemma 3.1 If g ∈ W 1,p(Ω) and Ω′ is an open set with closure contained in Ω then there is a

17
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constant c(Ω,Ω′) such that

||τh,mg||Lp(Ω′) ≤ c(Ω,Ω′)||∂mg||Lp(Ω′).

for all h such that h < d(∂Ω′, ∂Ω). An upper bound for c(Ω,Ω′) is the number of cubes with

length d(∂Ω′,∂Ω)
2

required to cover Ω̄′, and therefore it depends only in this way on the regularity

of Ω.

The converse of this Lemma is also true and is indeed more useful for our purposes.

Lemma 3.2 If g ∈ Lp(Ω) and Ω′ is an open set with closure contained in Ω and

||τh,mg||p ≤ k

for some fixed k and for all h < d(∂Ω′, ∂Ω) then g ∈W 1,p(Ω′). Moreover,

||∂mg||p ≤ k

and τh,mg converges strongly in Lp(Ω′) to ∂mg.

Derivatives and difference quotients commute. Indeed, if d(∂Ω′, ∂Ω) > 2h then

τh,mg ∈W 1,p(Ω′)

and ∂jτh,mg = τh,m∂jg. The difference quotient also enjoys some properties analogous

to those of derivatives. We have a rule for “integration by parts”. If g ∈ Lp(Ω) and

f ∈ Lp′(Ω) and either g or f have compact support then

∫

Ω

gτh,mf dx = −
∫

Ω

τh,mgf dx

for h sufficiently small. We also have a “Leibniz rule”,

τh,m(fg(x)) = g(x)τh,mf(x) + f(x + hem)τh,mg(x).
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3.2 Interior Regularity

Before we start the calculation to derive interior regularity, let us first motivate it with

the a priori estimate that underlies it. Let x0 be an interior point of Ω and let η be a

cut-off function in a neighbourhood of x0, so η ∈ C∞
0 (Ω), η(x) ∈ [0, 1] for all x ∈ Ω,

and there exists a neighbourhood Ω′ of x0 such that η(x) = 1 in this neighbourhood.

Assuming u is a smooth function, we can use ∂k(η
2∂ku)as a test function in (3.1). Doing

this yields, after expanding some derivatives,

∫

Ω

fi∂k(η
2∂kui) dx = −

∫

Ω

(ν(∇u)∂i∂kuj + u2∂r∂kus∂rus)
(

2η∂iη∂kuj + η2∂i∂kuj

)

dx

and therefore

∫

Ω

η2ν(∇u)∂i∂kuj∂i∂kuj dx = −
∫

Ω

η2ν2∂r∂kus∂rus∂i∂kuj∂iuj dx−

−
∫

Ω

2ην(∇u)∂i∂kuj∂iη∂kuj dx−

−
∫

Ω

2ν2η∂r∂kus∂rus∂iuj∂iη∂kuj dx−

−
∫

Ω

fi∂k(η
2∂kui) dx (3.4)

where u(∇u) = u1 + ν2|∇u|2. Applying Hölder’s inequality in the above yields easily

∫

Ω

η2ν(∇u)∂i∂kuj∂i∂kuj dx ≤ c(ν1)
[

||ηf ||2 + |||∇η|
√

ν(∇u)∇u||2
]

. (3.5)

Since the left hand of (3.5) side bounds the second derivatives of u, i.e. ν1||η2∇2u|| ≤
∫

Ω
η2ν(∇u)∂i∂kuj∂i∂kuj dx, we have the desired a priori estimate. The key part of this

calculation involved the ellipticity of the system which appeared via

∫

Ω

η2∂k (ν(∇u)∂iuj) ∂i∂kuj dx =

∫

Ω

η2ν(∇u)∂i∂kuj∂i∂kuj dx+

+

∫

Ω

η2ν2∂r∂kus∂rus∂i∂kuj∂iuj dx

≥
∫

Ω

η2ν(∇u)∂i∂kuj∂i∂kuj dx. (3.6)
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Chapter 3. Existence of Second Derivatives for a Model System

We now want to use the ideas of the a priori estimate in the difference quotient context.

Let Ω′′ be an open set with compact support in Ω such that supp(η) and supp(η(x−hem)

are contained in Ω′′ for every h < h0 for some h0 > 0. If h is sufficiently small then

η2τh,m(u) ∈W 1,4
0 and so is τ−h,m(η2τh,m(u)) and it is therefore a legitimate test function.

Letting φ = τ−h,m (η2τh,m (u)) in (3.2) we obtain

∫

Ω

fiτ−h,m

(

η2τh,m (ui)
)

dx =

∫

Ω

(

ν1 + ν2 |∇u|2
)

∂iuj∂iτ−h,m

(

η2τh,m (uj)
)

dx

= −
∫

Ω

τh,m

((

ν1 + ν2 |∇u|2
)

∂iuj

)

∂i

(

η2τh,m (uj)
)

dx (3.7)

The real trick now is to see that the elliptic properties observed for derivatives persist

in some sense for difference quotients. We want a bound for the right hand side of

(3.7) similar to (3.6). The trick can be found in [LU68] for a scalar quasilinear elliptic

equation and it applies here also. We are able to write the quantity

τh,m

((

ν1 + ν2 |∇u|2
)

∂iuj

)

= τh,m (ν (∇u) ∂iuj)

in a convenient form. For almost every x,

τh,m (ν (∇u) ∂iuj) =
1

h

∫ 1

0

∂

∂r

[

(

ν (r∇u(x + hem) + (1 − r)∇u(x))
)

·

·
(

∂i (ruj(x + hem) (1 − r)uj(x))
)

]

dr

=

[

[

ν1 +
ν2

3
(|∇u(x + hem)|2 + ∂rus(x + hem)∂rus(x)+

+ |∇u(x)|2)
]

δikδjl+

+
2ν1

3

[

∂kul (x + hem) ∂iuj (x + hem) +
1

2
∂kul (x) ∂iuj (x + hem)+

+
1

2
∂kul (x + hem) ∂iuj (x) + ∂kul (x) ∂iuj (x)

]

]

τh,m (∂kul)

= ah,m
ij,klτh,m (∂kul) . (3.8)

With this explicit expression, we are able to write some estimates (boundedness and
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coercivity) for the bilinear form aik,jl(h,m). For the coercivity estimate, we have

ah,m
ij,klξklξij =

(

ν1+
ν2

3

(

|∇u(x + hem)|2+ ∂rus(x + hem)∂rus(x) + |∇u(x)|2
)

)

|ξ|2+

+
2ν2

3

(

∂kul (x + hem) ∂iuj (x + hem) + ∂kul (x) ∂iuj (x + hem)+

+ ∂kul (x) ∂iuj (x)
)

ξklξij

≥
(

ν1 +
ν2

6

(

|∇u(x + hem)|2 + |∇u(x)|2
)

)

|ξ|2 +

+
ν2

3

(

(∂kul (x + hem) ξkl)
2 + (∂kul (x) ξkl)

2)

≥ 1

6

(

ν1 + ν2

(

|∇u(x + hem)|2 + |∇u(x)|2
))

|ξ|2 .

For the boundedness estimate, we have

ahm
ik,jlξklξij =

(

ν1 +
ν2

3

(

|∇u(x + hem)|2 + ∂rus(x + hem)∂rus(x) + |∇u(x)|2
)

)

|ξ|2 +

+
2ν2

3

(

∂kul (x + hem) ∂iuj (x + hem) + ∂lul (x) ∂iuj (x + hem)

+ ∂kul (x) ∂iuj (x)
)

ξklξij

≤
(

ν1 +
ν2

2

(

|∇u(x + hem)|2 + |∇u(x)|2
)

)

|ξ|2

+ ν2 (∂kul (x + hem) ∂iuj (x + hem) + ∂kul (x) ∂iuj (x)) ξklξij

≤
(

ν1 +
ν2

2

(

|∇u(x + hem)|2 + |∇u(x)|2
)

+ ν2

(

|∇u(x + hem)|2 + |∇u(x)|2
)

)

|ξ|2

≤ 3

2

(

ν1 + ν2

(

|∇u(x + hem)|2 + |∇u(x)|2
))

|ξ|2 .

Since we will encounter this expression several times, let us define

µhm = ν1 + ν2

(

|∇u(x + hem)|2 + |∇u(x)|2
)

.

In summary, then, we have shown, that

1

6
µh,m |ξ|2 ≤ ah,m

ij,klξklξij ≤ 3

2
µh,m |ξ|2 . (3.9)
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Now we use these estimates to analyse (3.7). From (3.7) and (3.8) we obtain

∫

Ω

fiτ−h,m(η2τh,m(ui)) dx = −
∫

Ω

ah,m
ij,kl∂kτh,m (ul) ∂i

(

η2τh,m (uj)
)

dx

= −
∫

Ω

η2ah,m
ij,kl∂kτh,m (ul) ∂i (τh,m (uj)) dx−

−
∫

Ω

ah,m
ij,kl∂kτh,m (ul) 2η∂iη (τh,m (uj)) dx,

so

∫

Ω

η2ah,m
ij,kl∂kτh,m (ul) ∂i (τh,m (uj)) dx = −

∫

Ω

fjτ−h,m(η2τh,m(uj)) dx−

−
∫

Ω

ah,m
ij,kl∂kτh,m (ul) 2η∂iη (τh,m (uj)) dx.

(3.10)

We now want to estimate from above both terms on the right hand side. Let us start

with the first of the two:

∣

∣

∣

∣

∫

Ω

fjτ−h,m(η2τh,m(uj)) dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω

fj [τ−h,m(η)ητh,m(uj)+η (x − hem) τ−h,m(ητh,m(uj))] dx

∣

∣

∣

∣

≤ ||ηf ||L2||τ−h,m(η)τh,m(u)||L2+

+ ||fη(x− hem)||L2||τ−h,m(ητh,m(u))||L2

≤ ||ηf ||L2||τ−h,m(η)τh,m(u)||L2 +
1

ε′ν1
||η(x + hem)f ||2L2+

+ ν1ε
′||τ−h,m(ητh,m(u))||2L2. (3.11)

At this point we invoke Lemma 3.1 to bound the last term here. From Lemma 3.1 we

see that there exists c(Ω,Ω′′) such that for all v in W 1,4
0 (Ω′′),

||τh,m(v)||Lp) ≤ c(Ω,Ω′′)||∇v||Lp.
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From this we obtain

||τ−h,m(ητh,m(u))||2L2 ≤ c(Ω,Ω′′)||∇(ητh,m(u))||2L2

≤ c(Ω,Ω′′)
(

||∇(η)τh,m(u)||2L2 + ||η∇τh,m(u)||L2

)2

≤ c(Ω,Ω′′)

(

||∇(η)τh,m(u)||2L2 +
1

ν1
|√µh,mη∇τh,m(u)||2L2

)

≤ c(Ω,Ω′′)

(

||∇ητh,mu||2L2 +
1

ν1
||√µh,mη∇τh,m(u)||2L2

)

(3.12)

Combining (3.11) and (3.12), letting ε = ε′c(Ω,Ω′′) we obtain the final estimate for this

term,

∣

∣

∣

∣

∫

Ω

fjτ−h,m(η2τh,m(uj)) dx

∣

∣

∣

∣

≤ c(Ω,Ω′′)
[

(

1 +
1

εν1

)

||(η + η(x + hem))f ||2L2+

+(1 + ν1ε)|(∇η + τh,mη)τh,mu||2L2

]

+ε||√µh,mη∇τh,m(u)||L2.

(3.13)

Now we turn to the second term on the right hand side of (3.10). It is not hard to show

using the form of ah,m and the Cauchy-Schwarz inequality that

∣

∣

∣
ah,m

ij,klξijχkl

∣

∣

∣
≤
(

ah,m
ij,klξijξkl

)
1
2
(

ah,m
ij,klχijχkl

)
1
2

. (3.14)

Indeed, ah,m is a positive definite symmetric bilinear form on the vector space of n by

n matrices, so (3.14) is just an assertion of Cauchy-Schwarz. Using (3.14) in the second
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term on the right hand side of (3.10) we obtain
∣

∣

∣

∣

∫

Ω

ah,m
ij,kl∂kτh,m (ul) η∂iη (τh,m (uj)) dx

∣

∣

∣

∣

≤
∫

Ω

(

η2ah,m
ij,kl∂kτh,mul∂iτh,muj

)
1
2 ·

·
(

ah,m
ij,klτh,m (uj) τh,m (ul) ∂jη∂kη

)
1
2
dx

≤ 2ε

3

∫

Ω

η2ah,m
ij,kl∂kτh,mul∂iτh,muj dx+

+
c

ε

∫

Ω

ah,m
ij,klτh,m (uj) τh,m (ul) ∂jη∂kη dx

≤ ε||√µh,mη∇τh,m(u)||2L2+

+
c

ε

∫

Ω

µh,m|∇η|2|τh,mu|2 dx.

(3.15)

On the other hand, we can bound below the left hand side of (3.10) using (3.9) to get

1

6
||√µh,mη∇τh,m(u)||2L2 ≤

∫

Ω

η2ah,m
ij,kl∂k (τh,m (ul)) ∂i (τh,m (uj)) dx. (3.16)

Letting ε = 1/24 we can combine the lower estimate (3.16) with the upper estimates

(3.13) and (3.15) for equation (3.10) to get

||√µh,mη∇τh,mu||2L2 ≤ c(Ω′,Ω, ν1)
[

∫

Ω

|∇η|2µh,m|τh,mu|2 dx + ||(η+η(x + hem))f ||2L2+

+ ||(∇η + τh,mη)τh,mu||2L2

]

. (3.17)

The right hand side of (3.17) is uniformly bounded in h. Indeed, by the absolute con-

tinuity of the integral we see µh,m converges strongly in L2 to µ0,m = ν1 + 2ν2|∇u|2,

which we will call µ. From Lemma 3.2 we know τh,mu converges strongly in L4 to

∂mu. Finally, from the smoothness of η we know τh,mu converges uniformly to ∂kη.

From the boundedness of convergent sequences follows the boundedness of the right

hand side of (3.17). Since

||∇τh,m(u)||L2(Ω′)|| ≤
1

ν1

||√µh,mη∇τh,m(u)||L2, (3.18)

we see from the uniform bound in h of the right hand side of (3.17) that the left hand

side of (3.18) is uniformly bounded in h. From Lemma 3.2, then, we assert that ∂m∂iu
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exists in L2(Ω′) for each i. Since m is arbitrary, u ∈ W 2,2(Ω′), and since x0 is arbitrary,

we have u ∈W 2,2(Ω′) for any Ω′ ⊂⊂ Ω.

We would now like to get an estimate for the interior derivatives similar to that of the a

priori estimate (3.5). To do this we note that from (3.17) and the uniform boundedness

of the right hand side of (3.17), the sequence
√
µh,mη∇τh,m(u) converges weakly to

some limit. From the strong convergence of µh,m to µ in L2 and the strong convergence

of η∇τh,m(u) to η∇∂(u) in L2 we see that the weak limit must be
√
µη∇∂mu. Indeed, if

φ is smooth we have from the aforementioned strong convergence

lim
h→0

∫

Ω

√
µh,mη∂iτh,mujφj dx =

∫

Ω

√
µη∂i∂mujφj dx.

The result follows from the density of smooth functions in L2. Since the norm of

the weak limit is less than the limit infimum of the norms of the limiting terms we

conclude that

||√µη∇τh,mu||2L2 ≤ lim inf
h→0

c(Ω′,Ω, ν1)
[

∫

Ω

|∇η|2µh,m|τh,mu|2 dx+

+ ||(η+η(x + hem))f ||2L2 + +||(∇η + τh,mη)τh,mu||2L2

]

.

(3.19)

From the strong convergence of τh,mu to ∂mu in L4 and the strong convergence of µh,m

to µ in L2 as well as the uniform convergence of η(x + hem) and τh,mη to η and ∂mη

respectively we can take the limit in the right hand side of (3.19) to conclude

||√µη∇∂mu||2L2 ≤ c(Ω′,Ω, ν1)
[

∫

Ω

|∇η|2µ|∂mu|2 dx + ||ηf ||2L2

]

. (3.20)

Indeed this is almost what we obtained in the a priori estimate (3.5). We would want

to remove the dependence of the constant on Ω and express the interior estimate only

in terms of the cut-off function η. This can be done as we will see in Chapter 4, but we

need not do this for now for our purposes.
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3.3 Boundary Regularity

Although we will not be able to prove boundary regularity for the Stokes-like problem

(2.1), we will include boundary regularity for the Poisson-like system to complete the

ideas of this Chapter. We will assume for this section that ∂Ω is of class C1,1. Let x0

be a point on ∂Ω, so there exists a C1,1 invertible function G mapping B+
R to Ω′, where

Ω′ is the intersection of some neighbourhood of x0 and Ω. If v is a function on Ω′,

let v∗ denote the pull back of v, so v∗(y) = v(G(y)). Since G is C1,1, if v ∈ W 1,4(Ω′)

then v∗ ∈ W 1,4(B+
R). Let J be the Jacobian of G, so ∇yu

∗ = ∇xuJ . We define U to

be (∇yu
∗)J−1. Already this section will be notationally clumsy, so we will introduce

A : B to mean AijBij hoping to make some of the calculations more clear. Let us

suppose that Φ ∈ W 1,4
0 (B+

R), and let φ(x) = Φ(G−1(x)). Using this φ in (3.2) and

changing variables we obtain

∫

B+
R

| detJ|f∗i Φi dy =

∫

Ω

fiφi dy

=

∫

Ω

(

ν1 + ν2 |∇xu|2
)

∇xu : ∇xφ dy

=

∫

B+
R

| detJ|
(

ν1 + ν2 |U|2
)

U : ∇yΦJ−1 dy. (3.21)

We can now use techniques similar to those in the previous section. As before we take

η to be a cut-off function with support in BR such that η|y+hem
also has support in BR.
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Chapter 3. Existence of Second Derivatives for a Model System

Letting Φ = τ−h,m(η2τh,m(u∗)) in the above where 1 ≤ m < n we obtain

∫

B+
R

ah,m
ij,kl (τh,mU)ij (τh,mU)kl η

2 dy =

∫

B+
R

ah,m
ij,kl (τh,mU)ij

(

∇u∗(y + hem)τh,mJ−1
)

kl
η2 dy−

−
∫

B+
R

ah,m
ij,kl (τh,mU)ij

(

τh,mu∗J−1
)

kl
2η∇η dy+

+

∫

B+
R

F h,m
ij

[

η2
(

∇u∗|
y+hem

τh,mJ−1
)

ij
− η2τh,m

(

∇u∗J−1
)

ij

]

dy−

−
∫

B+
R

| detJ|fiτ−h,m

(

η2τh,mu
∗
i

)

dy−

−
∫

B+
R

| detJ|ν(U)U :
(

τh,m u∗|
y−hem

2∇ητ−h,mJ−1
)

η dy−

−
∫

B+
R

| detJ|ν(U)U :
(

τh,m ∇u∗|
y−hem

τ−h,mJ−1
)

η2 dy. (3.22)

Here we have used the notation

ah,m
ij,kl =

∫ 1

0

| detJ(y + rhτh,my)|
[

ν(U + rhτh,mU)δikδjl+

ν2(U + rhτh,mU)ij(U + rhτh,mU)kl

]

dr (3.23)

and

F h,m
ij =

∫ 1

0

∂m | detJ|
y+rhτh,my

ν(U + rhτh,mU)(U + rhτh,mU)ij dr.

Since | detJ| is bounded both from above and away from zero, we have the same

estimates as the previous section for ah,m, namely

c(∂Ω)µh,m |ξ|2 ≤ ah,m
ij,klξijξkl ≤ c(∂Ω)µh,m |ξ|2 (3.24)

where this time

µh,m = ν1 + ν2

(

|U(y + hem)|2 + |U|2
)

.
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Chapter 3. Existence of Second Derivatives for a Model System

As well as ah,m we can also estimate Fh,m. For any gij ∈ W 1,4
0 (B+

R) we have, using the

fact that | detJ| is bounded away from zero and that J is Lipschitz,
∫

B+
R

F h,m
ij gij dy ≤

∫

B+
R

∫ 1

0

|∂m |detJ(y+rhτh,my)|| ν(U+rhτh,mU) |U+rhτh,mU| |g| drdy

≤ c(∂Ω)

ε

∫

B+
R

µh,m

(
∣

∣

∣
U|

y+hem

∣

∣

∣
+ |U|2

)

dy + ε

∫

B+
R

µ2
h,m|g|2 dy. (3.25)

In the right hand side of (3.22) we now have six terms to estimate. Let us make the

estimates for each term in order denoting each integral by a Roman numeral from I to

VI.

For the first we have

|I| =

∣

∣

∣

∣

∣

∫

B+
R

ah,m
ij,kl (τh,mU)ij

(

∇u∗|
y+hem

τh,mJ−1
)

kl
η2 dy

∣

∣

∣

∣

∣

≤ ε

∫

B+
R

ah,m
ij,kl (τh,mU)ij (τh,mU)kl η

2 dy+

+
c

ε

∫

B+
R

ah,m
ij,kl

(

∇u∗|
y+hem

τh,mJ−1
)

ij

(

∇u∗|
y+hem

τh,mJ−1
)

kl
η2 dy

≤ ε

∫

B+
R

ah,m
ij,kl (τh,mU)ij (τh,mU)kl η

2 dy +
c(∂Ω)

ε

∫

B+
R

µh,m

∣

∣

∣
∇u∗|

y+hem

∣

∣

∣

2

η2 dy. (3.26)

The second term is estimated similarly. For it we have

|II| =

∣

∣

∣

∣

∣

2

∫

B+
R

ah,m
ij,kl (τh,mU)ij

(

τh,mu∗J−1
)

kl
η∇η dy

∣

∣

∣

∣

∣

≤ ε

∫

B+
R

ah,m
ij,kl (τh,mU)ij (τh,mU)kl η

2 dy +
c(∂Ω)

ε

∫

B+
R

µh,m|τh,mu∗|2 dy. (3.27)

From our estimate (3.25) for Fh,m we can bound the third term by

|III| =

∣

∣

∣

∣

∣

∫

B+
R

F h,m
ij

[

η2
(

∇u∗|
y+hem

τh,mJ−1
)

ij
− η2τh,m

(

∇u∗J−1
)

ij

]

dy

∣

∣

∣

∣

∣

≤ c(∂Ω)

(

1 +
1

ε

)
∫

B+
R

µh,m

(
∣

∣

∣
U|

y+hem

∣

∣

∣
+ |U|2

)

η2 dy+

+ c(∂Ω)

∫

B+
R

µh,mη
2
∣

∣

∣
∇u∗|

y+hem

∣

∣

∣

2

dy + ε

∫

B+
R

µh,mη
2
∣

∣τh,m

(

∇u∗J−1
)
∣

∣

2
dy.

(3.28)

28



Chapter 3. Existence of Second Derivatives for a Model System

The fourth term is estimated as before in (3.13). We arrive at

|IV| =

∣

∣

∣

∣

∣

∫

B+
R

| detJ|fiτ−h,m

(

η2τh,mu
∗
i

)

dy

∣

∣

∣

∣

∣

≤ c(∂Ω)

[

(

1 +
1

εν1

)
∫

B+
R

| detJ||f |2 dy + (1 + ν1ε) dy

∫

B+
R

| detJ||∇u∗|2 dy
]

+

+ ε

∫

B+
R

µh,mη
2 |τh,m∇u∗|2 dy. (3.29)

Since τh,m∇u∗ = τh,m(U)J − ∇u∗|
y+hem

τh,m(J−1)J we can estimate the last term with

ε

∫

B+
R

µh,mη
2 |τh,m∇u∗|2 ≤ 2ε

∫

B+
R

µh,mη
2 |τh,mU|2 dy + c(∂Ω)ε

∫

B+
R

µh,mη
2 |∇u∗|2

y+hem
dy.

(3.30)

Combining (3.29) and (3.30) yields our final estimate for the fourth term:

|IV| ≤ c(∂Ω)

[

(

1 +
1

εν1

)
∫

B+
R

| detJ |f 2 dy + (1 + ν1ε)

∫

B+
R

|∇u∗|2 dy
]

+

+ c(∂Ω)ε

∫

B+
R

µh,mη
2
∣

∣

∣
∇u∗|

y+hem

∣

∣

∣

2

dy + 2ε

∫

B+
R

µh,mη
2 |τh,mU|2 dy.

(3.31)

Using Hölder’s inequality and the fact that | detJ| is bounded away from zero and

that the derivatives of J−1 are in L∞ we easily estimate the fifth term by

|V| =

∣

∣

∣

∣

∣

∫

B+
R

| detJ|ν(U)U :
(

τh,m u∗|
y−hem

∇ητh,mJ−1
)

η dy

∣

∣

∣

∣

∣

≤ c(∂Ω)

[

∫

B+
R

ν(U)U : Uη2 dy +

∫

B+
R

ν(U) |τh,mu∗|2
y−hem

dy

]

. (3.32)

The last term is mildly more tricky. Since τh,m∇u∗ = τh,m(U)J − ∇u∗|
y+hem

we have

|VI| =

∣

∣

∣

∣

∣

∫

B+
R

| detJ|ν(U)U :
(

τh,m ∇u∗|
y−hem

τh,mJ−1
)

η2 dy

∣

∣

∣

∣

∣

≤ c

ε

∫

B+
R

| detJ|ν(U)U : Uη2 dy + c(∂Ω)ε

∫

B+
R

ν(U)|∇u∗|2η2 dy+

+ ε

∫

B+
R

ν(U)
∣

∣

∣
τh,m(U|

y−hem
)
∣

∣

∣

2

η2 dy. (3.33)
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We want to be able to absorb this last term into the left hand side. Changing variables

we have

∫

B+
R

ν(U)
∣

∣

∣
τh,m(U|

y−hem
)
∣

∣

∣

2

η2 dy =

∫

B+
R

ν(U|
y+hem

) |τh,m(U)|2 η2
∣

∣

y+hem
dy

≤
∫

B+
R

ν(U|
y+hem

) |τh,m(U)|2
(

η2 + (h sup∇η)2
)

dy

≤
∫

B+
R

µh,m |τh,m(U)|2 η2 dy+

+ c(η)

∫

B+
R

µh,m

(

∣

∣

∣
U|

y+hem

∣

∣

∣

2

+ |U|2
)

dy.

(3.34)

Combining (3.33) with (3.34) we arrive at our last estimate for the sixth term,

|VI| ≤ c

ε

∫

B+
R

| detJ|ν(U)U : Uη2 dy + c(∂Ω)ε

∫

B+
R

ν(U)|∇u∗|2η2 dy+

+ c(η)ε

∫

B+
R

µh,m

(

∣

∣

∣
U|

y+hem

∣

∣

∣

2

dy + |U|2
)

dy + ε

∫

B+
R

µh,m |τh,m(U)|2 η2 dy.

(3.35)

We now combine the lower bound for the left hand side given in (3.24) with the upper

estimates in (3.26), (3.27), (3.28), (3.31), (3.32) and (3.35), absorbing terms on the right

similar to those on the left. The remainder of the proof continues as in the interior case

to get that U has square integrable derivatives in each of the directions 1 ≤ m < n and

∫

B+
R

ν(U) |∂mU|2 dy ≤

c(∂Ω, ν1)

[

∫

B+
R

ν(U) |∇u∗|2 dy +

∫

B+
R

ν(U) |U|2 dy +

∫

B+
R

| detJ||f |2 dy
]

. (3.36)

We now use the fact that J has determinant bounded above and below to get |U| has

bounds by

c(∂Ω)|∇u∗| ≤ |U| ≤ c(∂Ω)|∇u∗|
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to get

∫

B+
R

ν(∇u∗) |∂m∇u∗|2 dy ≤ c(∂Ω, ν1)

[

∫

B+
R

ν(∇u∗) |∇u∗|2 dy +

∫

B+
R

| detJ||f |2 dy
]

.

(3.37)

We have thus shown the existence of and given estimates for ∂m∂ku
∗ for 1 ≤ m < n,

1 ≤ k ≤ n. We now turn to obtaining estimates for ∂n∂nu
∗. We do this by controlling

it in terms of the other second partial derivatives that we already know.

Let us denote the entries of the matrix J−1 by J ij . Then, the partial differential equa-

tion in the flattened coordinates reads

∂j(| detJ|J jkJ lk(ν1 + ν2∂qu
∗
mJ

qr∂su
∗
mJ

sr)∂lu
∗
i ) = | det J |f ∗

i .

By interior regularity, this equation holds almost everywhere in B+
R . We are only in-

terested in terms involving two derivatives with respect to yn. So, we move all other

terms to the right hand side and denote collectively the right hand side by F. Note

that all of these terms can be controlled by our previous estimates. We arrive at the

equation

JnrJnr(ν1 + ν2∂ku
∗
sJ

kl∂mu
∗
sJ

ml) + 2ν2J
nsJnk∂lu

∗
jJ

lk∂mu
∗
iJ

ms = Fi

Thus we are lead to consider the invertibility of the matrix

δij +
2ν2J

nsJnk∂lu
∗
jJ

lk∂mu
∗
iJ

ms

JnrJnr(ν1 + ν2∂ku∗sJ
kl∂mu∗sJ

ml)

This symmetric matrix exists almost everywhere since JnrJnr > 0 (J is invertible). It

is also positive definite since

δijξiξj +
2ν2J

nsJnk∂lu
∗
jJ

lk∂mu
∗
iJ

ms

JnrJnr(ν1 + ν2∂ku∗sJ
kl∂mu∗sJ

ml)
ξiξj = |ξ|2 +

2ν2|Jnk∂su
∗
jJ

skξj|2
JnrJnr(ν1 + ν2∂ku∗sJ

kl∂mu∗sJ
ml)

≥ |ξ|2
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Moreover, since
∣

∣

∣

2ν2JnsJnk∂lu
∗

j J lk∂mu∗

i Jms

JnrJnr(ν1+ν2∂ku∗

sJkl∂mu∗

sJml)

∣

∣

∣
≤ 2,

δijξiξj +
2ν2J

nsJnk∂lu
∗
jJ

lk∂mu
∗
iJ

ms

JnrJnr(ν1 + ν2∂ku∗sJ
kl∂mu∗sJ

ml)
ξiξj ≤ 3|ξ|2.

We have thus established that the matrix is invertible with inverse uniformly bounded

in B+
R . Therefore

∫

B+
R

η2ν(∇u∗)|∂n∂nu
∗|2 dy < c(∂Ω)

∫

B+
R

1

ν(∇u∗)
|F|2η2 dy

< c(∂Ω, ν1)

[

∫

B+
R

ν(∇u) |∇u∗|2 dy +

∫

B+
R

| detJ||f |2 dy
]

.

(3.38)

Combining (3.37) and (3.38) together with the interior estimate (3.20) and a simple

covering estimate based on the compactness of Ω we have our final global estimate

||(ν(∇u))
1
2∇2u||L2(Ω) ≤ c(Ω, ν1)

[

||f ||2L2(Ω) + ||(ν(∇u))
1
2∇u||2L2(Ω)

]

(3.39)

3.4 A Simple Application

Let us now use our L2 regularity to prove the existence of W 2,2 solutions of the sta-

tionary vector-Burgers-like system

−∂j

[(

ν1 + ν2|∇u|2
)

∂jui

]

+ uj∂jui = fi (3.40)

where f ∈ L2. We define the operator Ft from W 1,4
0 to W 1,4

0 by Ft(v) = u where u is

the unique weak solution of

−∂j

[(

ν1 + ν2‖∇u|2
)

∂jui

]

= fi − tvj∂jvi.

Notice that by Sobolev’s inequality, in three dimensions v is continuous, so vj∂jvi ∈ L2.

Thus Ft is well defined. From the estimate (3.3) together with the fact that

||u− v||4
W 1,4

0
<

∫

ν(∇u)∇u : ∇(u − v) − ν(∇v)∇v : ∇(u− v) dx (3.41)
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we easily obtain the continuity of this map uniformly in t fromW 1,4
0 toW 1,4

0 . Inequality

(3.41)) follows from arguments used in Corollary 4.1 of Chapter 4. For interest and

motivation, we have also proven it directly in Appendix A.

Since f and vj∂jvi are both in L2, the W 2,2 estimate (3.39) together with the compact

embedding of W 2,2 ∩W 1,4
0 in W 1,4

0 imply that Ft is compact.

Moreover, when t = 0, we have a unique fixed point of the map, namely the solution

of the system studied in the previous sections of this Chapter. Therefore, to apply the

Leray-Schauder fixed point theorem, we need only obtain an a priori estimate of the

W 1,4
0 norm of a fixed point for each t.

However, if u is a fixed point then we have using u as a test function in the weak

formulation of (3.40)

ν2||∇u||4L4 <

∫

Ω

ν(∇u)∂iuj∂iuj dx

=

∫

Ω

fjuj dx + t

∫

Ω

uj∂juiui dx

≤ ||f ||L2||∇u||L4|Ω| 14 + tc(Ω)||∇u||3L4|Ω|
1
4

≤ c(Ω, ν2)
[

||f ||
4
3

L2 + t4
]

+
ν2

2
||∇u||4L4

where we have used the Poincaré inequality to get this estimate.

This gives us the desired a priori estimate (independent of t in [0, 1])

||∇u||4L4 < c(Ω, ν2)
[

||f ||
4
3

L2 + 1
]

. (3.42)

Therefore, we may conclude by the Leray-Schauder fixed point theorem that there

exists a fixed point in W 2,2 ∩W 1,4
0 to each operator Ft and, in particular, there exists at

least one solution in the same class to the system (3.40).

We now turn to applying the ideas of this Chapter to the Stokes-like system (2.1).

33



Chapter 4

Interior Regularity for the Stokes-Like
Problem

We shall now concentrate on the interior regularity of weak solutions of system (1.2).

As mentioned in the Introduction, we will do this in a more generalized setting. We

study weak solutions of the system

− div T(Du) = −∇π + f

div u = 0

u|∂Ω = 0.

(4.1)

where T is a C1 function mapping Rn×n
symm to Rn×n

symm such that for some p ≥ 2

∂klTij(A)BijBkl ≥ c1(1 + |A|p−2)|B|2 (4.2)

|∂klTij(A)| ≤ c2(1 + |A|p−2) (4.3)

for all symmetric n dimensional matrices A and B. Let us first ensure that these condi-

tions are satisfied by the Stokes-like system (2.1). In this case, T(A) = (2ν1+2ν2|A|2)A,

so ∂klTij(A) = (2ν1 + 2ν2|A|2)δikδjl + 4ν2AklAij . Therefore

∂klTij(A)BklBij = (2ν1 + 2ν2|A|2)|B|2 + 4ν2AklBklAijBij (4.4)

≥ min(2ν1, 2ν2)(1 + |A|2)|B|2 (4.5)
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and

|∂klTij(A)| = |(2ν1 + 2ν2|A|2)|B|2 + 4ν2AklAij | (4.6)

≤ max(2ν1, 6ν2)(1 + |A|2). (4.7)

Thus our stress tensor is of the type considered. Indeed, the conditions (4.2) and (4.3)

are essentially those of ellipticity with a natural growth condition.

Let f be in (W 1,p
0 )∗. Then we say that u is a weak solution of (1.2) if is in W 1,p

0 and

satisfies
∫

Ω

Tij(Du)Dijφ dx =< f , φ > (4.8)

for all φ in J (and therefore by continuity for all φ in W 1,p
0 (Ω)). From the properties

(4.2) and (4.3) of T together with the Fundamental Theorem of Calculus it is well

known [MNRR96] that T also satisfies

Tij(A) · Aij ≥ c(c1, p)(1 + |A|p−2)|A|2, (4.9)

|Tij(A)| ≤ c(c2, n)(1 + |A|p−2)|A|, (4.10)

(Tij(A) − Tij(B)) · (A − B)ij ≥ c1|A −B|2. (4.11)

From these properties, it is not difficult to show, for example, with standard Galerkin

techniques and monotone operator theory that weak solutions of (1.2) exist. Moreover,

from property (4.11) we see that weak solutions are unique. These results (although

not always the methods used to prove them) are analogous to those determined for

the Stokes-like system in Chapter 2. Aside for these cursory comments on existence

we ignore this topic for the remainder of this thesis keeping in mind its scope and

hoping to focus on the regularity issues.

We now consider the central difficulty presented by the regularity theory of equation

(4.8), namely that the weak pressure is a priori in a less regular space than L2(Ω), as

seen for the Stokes-like system in Chapter 2. Indeed, if f is in L2(Ω), the functional L
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defined on v in W 1,p
0 by

L(v) =

∫

Ω

Tij(Du)Dij(v) − f · v dx

is linear and bounded on W 1,p
0 and vanishes on J1,p

0 , so it follows from standard

Navier-Stokes theory [Gal94] that there exists a function π in Lp′

loc(Ω) such that

∫

Ω

Tij(Du)Dij(φ) − f · φ dx =

∫

Ω

π div φ dx (4.12)

for all φ in J . Here lies the problem. Although the W 1,p
0 weak solution u has an

initially known higher degree of regularity than, for example, W 1,2
0 weak solutions

of the Stokes system, the corresponding pressure arising from basic Navier-Stokes

theory potentially lies in a less regular space: Lp′ instead of L2. Proceeding formally,

if η is a cut off function corresponding to interior regularity and we use η2∂i∂iu as a

test function in (4.12), as we did for the a priori estimate of Chapter 3, we must bound

from above a term of the form

∫

Ω

πη (∇η · ∂i∂iu) dx.

in terms of the L2 norm of the second derivatives of u. Just applying Hölder’s inequal-

ity would then create a integral such as

∫

Ω

|∇η|2π2 dx

which is not controlled by knowing π is in Lp′

loc(Ω). This problem does not arise in

the case of periodic boundary conditions since ∆u is a solenoidal test function. We

only encounter this problem when we attempt to localize our test function, which is

necessary for Dirichlet boundary conditions.

Hence there are two obvious lines of attack. Either use the fact that f is more regular

than just being in (W 1,p
0 )∗ to prove something stronger about the pressure or find a

solenoidal test function that avoids dealing with the pressure. The approach for the
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system (4.1) has been to prove, essentially, that the pressure lies in L2(Ω) [MNR96]. To

do this, however, one assumes that T is derived from a potential (so Tij = ∂ijF (|Du|2)

for some scalar valued function F ). The proof then continues by approximating the

potentials from which T is derived with potentials exhibiting linear growth in |Du|2

at infinity and then taking limits. Until now, a solenoidal test function approach has

not been used and in doing so we eliminate an assumption on the form of T, although

at the cost of not yet being able to prove boundary regularity.

To motivate our method, let us recall the solenoidal test function approach to interior

regularity for the Stokes operator. We will work formally assuming that u is smooth.

Following [Lad69] we let η be a cut-off function corresponding to interior regularity

and use the the fact that the curl of a vector field is solenoidal to set φ = curl(η2 curlu)

in (4.8). Then, distributing the curl operation in φ, we see

φ = η2(−∆u + ∇(div u)) + ∇η2 × curlu

= −η2∆u + 2η (∇η × curlu) . (4.13)

For the Stokes system, Tij(Du) = Dij(u) and we quickly arrive after some integrations

by parts and applications of Hölder’s inequality to the desired estimate
∫

Ω

η2|∇2u|2 dx ≤ c

[
∫

Ω

η2|f |2 + |∇η|2|∇u|2 dx
]

. (4.14)

Perhaps not surprisingly, the same test-function φ yields a similar a priori estimate

for the general case. This time, we will be more explicit since the a priori estimate so

obtained will be the sharpest estimate we shall see and should be the goal of our later

calculations. For our test function we set

φi = −η2∆ui + ∂jη
2∂iuj − ∂jη

2∂jui (4.15)

which is easily seen to correspond with (4.13) in the three dimensional case and avoids

having to reinterpret the curl and cross-product in higher dimensional settings. In-

deed, Heywood used this variant of (4.13) in [Hey76] in discussing interior regularity
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of the Stokes operator. Again, we assume u to be smooth in the following computa-

tions. Using (4.15) as the test function in (4.8) and integrating by parts we get

∫

Ω

η2∂jTkl(Du)∂k∂jul dx =

∫

Ω

∂k(Tkl(Du))∂j(η
2∂luj)−

− ∂j(Tkl(Du))∂kη
2∂jul + Tij(Du)∂jφi dx

=

∫

Ω

∂k(Tkl(Du))∂j(η
2∂luj) − ∂j(Tkl(Du))∂kη

2∂jul + fiφi dx.

(4.16)

From the estimate (4.2) we obtain immediately

∫

Ω

η2∂jTkl(Du)∂k∂jul dx =

∫

Ω

η2∂mn (Tkl(Du))Dmn(∂ju)Dkl(∂ju) dx

≥ c1
∑

j

∫

Ω

η2(1 + |Du|p−2)|∂jDu|2 dx. (4.17)

Now we need to estimate from above the three integrals on the right hand side of

(4.16). For the first we have using (4.3) and Hölder’s inequality,

∣

∣

∣

∣

∫

Ω

∂kTkl∂jη
2∂luj dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω

∂mn (Tkl(Du))Dmn(∂ku)2η∂jη∂luj

∣

∣

∣

∣

dx

≤
∑

k

∫

Ω

c(c2, n)(1 + |Du|p−2)η|∂kDu||∇η||Du| dx

≤
∑

j

∫

Ω

c(c2, n)(1 + |Du|p−2)η|∂jDu||∇η||Du| dx

≤
∫

Ω

c(c1, c2, n)(1 + |Du|p−2)|∇η|2|Du|2+

+ ε(c1)
∑

j

∫

Ω

c(1 + |Du|p−2)η2|∂jDu|2 dx. (4.18)
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For the second we have the similar estimate, also using (4.3) and Hölder’s inequality,
∣

∣

∣

∣

∫

Ω

∂jTkl∂kη
2∂jul dx

∣

∣

∣

∣

≤
∫

Ω

|∂mnTkl(Du)||Dmn∂ju|2η|∂kη||∂jul| dx

≤
∑

j

∫

Ω

c(c2, n)(1 + |Du|p−2)|∂jDu|η|∇η||Du| dx

≤
∫

Ω

c(c1, c2, n)(1 + |Du|p−2)|∇η|2|Du|2 dx+

+
∑

j

ε(c1)

∫

Ω

η2(1 + |Du|p−2)|∂jDu|2 dx. (4.19)

For the last estimate we have by simple application of Hölder’s inequality,
∣

∣

∣

∣

∫

Ω

fiφi dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω

−η2fi∆ui + fi∂jη
2(∂iuj − ∂jui) dx

∣

∣

∣

∣

≤ c(c1)

∫

Ω

(

η2|f |2 + |∇η|2|Du|2
)

dx + ε(c1)

∫

Ω

η2|∆u|2 dx. (4.20)

We would like to bound the last term in (4.20) in terms of derivatives of Du so as to

incorporate it into the left hand side. To do this, we note that for smooth solenoidal

functions v,
∫

Ω

η2|Dv|2 dx =
1

2

∫

Ω

η2(∂ivj∂ivj + ∂jvi∂ivj) dx

≥
∫

Ω

1

4
η2|∇v|2 − 4|∇η|2|v|2 dx.

Thus,
∫

Ω

η2|∇v|2 dx ≤ 16

∫

Ω

|∇η|2|v|2 + η2|Dv|2 dx. (4.21)

Since smooth solenoidal functions are dense in J1,2
0 and since the integrals in (4.21) are

continuous on this space, the result holds for all v in J1,2
0 , and we will have occasion

to use this fact later.

Thus, letting v = ∂ju in (4.21) and summing on j we find that for smooth solutions,

∑

j

∫

Ω

η2(1 + |Du|p−2)|∂jDu|2 dx ≤

c(c1)

∫

Ω

η2|f |2 dx + c(c1, c2, n)

∫

Ω

|∇η|2
[

|∇u|2 + |Du|p
]

dx. (4.22)
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Our goal now is to find a way to incorporate these ideas into a proof. To do this, we

will first need to take care of some preliminaries.

4.1 Preliminary Lemmas

To begin, we consider the smearing operator σ defined in the introduction. We now

prove a simple lemma showing that its action on Sobolev spaces is well behaved.

Lemma 4.1 Let v ∈ W 1,p(Ω) and let Ω′ be an open set with closure contained in Ω with

d(Ω′, ∂Ω) > h. Then the function

σh,mv(x) =

∫ 1

0

v(x + them) dt

is in W 1,p(Ω′) with

∂iσh,mv(x) =

∫ 1

0

∂iv(x + them) dt. (4.23)

Moreover,

||σh,mv||W 1,p(Ω′) ≤ ||v||W 1,p(Ω′′) (4.24)

where Ω′′ is any open set such that Ω ⊃ Ω′′ ⊃ Ω′ and d(Ω′, ∂Ω′′) > h.

Proof:

Let us first show that σh,mv has generalized first derivatives. If ψ is in C∞
0 (Ω′), then

∫

Ω

(σh,mv) ∂iψ dx =

∫

Ω

∫ 1

0

v(x + them)∂iψ dt dx.

By Fubini’s theorem, together with the fact that v(x + them) is bounded uniformly in

t in W 1,p(Ω′), we are able to change the order of integration. We also change variables

to get

∫

Ω

(σh,mv) ∂iψ dx =

∫ 1

0

∫

Ω

v(y)∂iψ(y − them) dy dt.
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Now we use Fubini again to change the order of integration and use the fact that ψ is

smooth to exchange the order of integration and differentiation to obtain

∫

Ω

(σh,mv) ∂iψ dx =

∫

Ω

v(y)∂i

∫ 1

0

ψ(y − them) dt dy.

Since v has generalized derivatives, we can integrate by parts and change variables a

final time to arrive at the desired equation

∫

Ω′

(σh,mv) ∂iψ dx = −
∫

Ω′

∫ 1

0

∂iv(x + them) dtψ dx.

Since ψ is arbitrary in C∞
0 (Ω′) we conclude that ∂iσh,mv exists and is

∫ 1

0
∂iv(x+them) dt.

To show that ∂iσh,mv is in Lp we use Jensen’s inequality and Fubini. It follows that

∫

Ω′

|∂iσh,mv|p dx ≤
∫

Ω′

∫ 1

0

|∂iv(x + them)|p dt dx

≤
∫ 1

0

∫

Ω′

|∂iv(x + them)|p dxdt

≤
∫

Ω′′

|∂iv(x)|pdΩ,

where Ω′′ is any set satisfying the properties assumed.

�

Our regularity proof will use as before method of difference quotients. In the course

of our calculations, we will have occasion to estimate from below the integral

∫ 1

0

|tA + (1 − t)B|q dt.

This useful estimate is claimed but not proven in [LU68]. We present its proof here

since it has a nice, geometrically motivated, argument and gives us the opportunity to

put a lone figure in this thesis. If we are looking for a lower bound for

∫ 1

0

|tA + (1 − t)B|q dt.

we can equate this integral with an average value of the function |y|q taken along the

line from A to B. Given a fixed B, it seems reasonable the lowest path integral of all
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C

B

A

Large Path Average

Small Path Average

Figure 4.1: Comparison of Path Integrals

points C on the same level set as A is the one that passes through 0 (see Figure 4.1).

Since this point is on the line that connects B and 0, the argument reduces to the one

dimensional case, which is easy to prove.

Lemma 4.2 Let A and B be any two matrices in Rn×n. Then for all q ≥ 0,
∫ 1

0

|tA + (1 − t)B|q dt ≥ c(q) (|A|q + |B|q) . (4.25)

Proof:

Since the integral on the left hand side of (4.25) is symmetric in A and B by change

of variables , we may assume without loss of generality that |B| = δ|A| for some δ in

[0, 1]. Since

|tA + (1 − t)B| ≥ |(|tA| − |(1 − t)B|)|

= |(tδ|B| − (1 − t)|B|)|

= |t(1 + δ) − 1||B|
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for all t in [0, 1], and since yq is non-decreasing for all q ≥ 0 and y ≥ 0, it follows that

|tA + (1 − t)B|q ≥ |t(1 + δ) − 1|q|B|q.

Integrating this expression in t yields
∫ 1

0

|tA + (1 − t)B|q dt ≥
∫ 1

0

|t(1 + δ) − 1|q|B|q dt

= |B|q 1

1 + δ

∫ 1+δ

0

|1 − w|q dw

≥ |B|q 1

2

∫ 1

0

(1 − w)q dw

≥ 1

4(1 + q)
(|A|q + |B|q) ,

which proves estimate (4.25) with c(q) = 1/(4(q + 1)).

�

A Corollary to Lemma 4.2 is an improvement of estimate (4.11). We will use this

improvement in our study of the regularity of steady solutions of (1.1).

Corollory 4.1 Let T satisfy (4.2) for some p ≥ 2. Then

(Tij(A) − Tij(B))(A− B)ij ≥ c1|A −B|2 + c(c1, p)|A−B|p. (4.26)

Proof:

From the Fundamental Theorem of Calculus and (4.2) it is easy to see that

(Tij(A) − Tij(B))(A− B)ij =

∫ 1

0

∂rsTij(tA + (1 − t)B)(A −B)rs(A− B)ij dt

≥
∫ 1

0

c1
(

1 + |tA + (1 − t)B|p−2
)

dt|A− B|2.

From Lemma (4.2) we conclude

(Tij(A) − Tij(B))(A− B)ij ≥ c1|A −B|2 + c(c1, p)
(

|A|p−2 + |B|p−2
)

|A− B|2

≥ c1|A −B|2 + c(c1, p)|A−B|p.
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�

The primary application of Lemma 4.2 is to take advantage of the ellipticity property

(4.2) of T in a difference quotient setting. In our final preliminary Lemma we prove

this classical [LU68] coercivity estimate together with a growth estimate. These are

analogous to the properties proven for the bilinear form ah,m of Chapter 3.

Lemma 4.3 Let T satisfy the ellipticity property (4.2) and the growth property (4.3) for some

p ≥ 2. Then for every u in J1,p
0 (Ω) and every B in Rn×n

symm and for almost every x in Ω,

τh,s(Tij(Du(x)))τh,sDiju ≥ c(c1, p)(1 + |Du|p−2 + |Du|p−2
x+hes

)|τh,sDu|2 (4.27)

and

|τh,s(Tij(Du(x)))Bij | ≤ c(c2, n, p)(1 + |Du|p−2
x+hes

+ |Du|p−2|)|τh,sDu||B|. (4.28)

Proof:

For the bound (4.27) we use the fact that for almost every x,

τh,s(Tij(Du(x)) =
1

h

∫ 1

0

d

dt
Tij(thτh,s(Du(x)) + Du(x)) dt

=

∫ 1

0

∂klTij(thτh,s(Du(x))τh,sDklu dt. (4.29)

Hence, contracting (4.29) with τh,sDiju we obtain from (4.2)

τh,s(Tij(Du(x)) ≥
∫ 1

0

c1(1 +
∣

∣(t Du|
x+hes

+ (1 − t)Du)
∣

∣

p−2
) dt|τh,sDu|2.

From inequality (4.25) of Lemma 4.2 we obtain immediately (4.27).
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For the second estimate (4.28) we use the growth assumption (4.3) together with the

property that yp−1 is convex for every p ≥ 2 to find that for almost every x

|τh,s(Tij(Du))Bij | =

∣

∣

∣

∣

∫ 1

0

∂klTij(thτh,sDu + Du)Dkl(τh,su) dtBij

∣

∣

∣

∣

≤ c(c2, n)

∫ 1

0

(1 +
∣

∣

(

t Du|x+hes
+ (1 − t)Du

)
∣

∣

p−2
) dt |τh,sDu||B|

≤ c(c2, n, p)
(

1 + |Du|p−2
x+hes

+ |Du|p−2
)

|τh,sDu||B|.

�

4.2 A New Test Function

Our next goal is to find a solenoidal test function to use in the difference quotient con-

text to arrive at interior regularity. We are motivated by the form of the test function

(4.15). Therefore, let us write

φi = −η2
∑

j

τ−h,jτh,jui + ∂jη
2Ψij − ∂jη

2Ψji (4.30)

where Ψ is an unknown tensor to be determined by the solenoidal constraint. Specifi-

cally, Ψ must satisfy

−∂iη
2
∑

j

τ−h,jτh,jui + ∂iη
2∂jΨji − ∂iη

2∂jΨij = 0.

This could be solved, as in the test function (4.15), if one could exhibit a tensor Ψ such

that ∂jΨij = 0 and ∂jΨji =
∑

j τ−h,jτh,jui. However, in the support of η, we can write
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the difference quotient “Laplacian” as

∑

j

τ−h,jτh,jui =
∑

j

τ−h,j
1

h

∫ 1

0

∂

∂t
ui(x + htej) dt

=
∑

j

τ−h,j

∫ 1

0

∂jui(x + htej) dt

=
∑

j

τ−h,j∂j

∫ 1

0

ui(x + htej) dt

=
∑

j

∂jτ−h,jσh,jui (4.31)

where used Lemma 4.1 applied to the W 1,p functions ui. We define

Ψji = τ−h,j

∫ 1

0

ui(x+ htej)dt = τ−h,jσh,jui. (4.32)

Then, applying Lemma 4.1 again and using the fact that u is solenoidal, we get ∂iΨji =

0. Therefore Ψ is the desired tensor and

φi =
∑

j

[

−η2τ−h,jτh,jui + ∂jη
2τ−h,iσh,iuj − ∂jη

2τ−h,jσh,jui

]

(4.33)

is the test function we seek.

4.3 Interior Regularity

We now use the test function found in the previous section to prove our central result.

Theorem 4.1 Let Ω be a bounded domain and u be a weak solution of (1.2) where f is in

(W 1,p
0 (Ω))∗ ∩ L2

loc(Ω) and T satisfies properties (4.2) and (4.3). Then u is in W 2,2
loc (Ω) and

satisfies

∫

Ω

η2

[

|∇2u|2 + |Du|p−2
∑

j

|∂jDu|2
]

dx ≤

c(c1, c2, n)

(
∫

Ω

η2|f |2 dx +

∫

Ω

|∇η|2
[

|∇u|2 + |Du|p
]

dx

)

(4.34)

for every smooth interior cut-off function η.
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Proof:

We divide the proof into two parts. First we show that u has second derivatives.

However, we will be constrained in our use of integration by parts when we show the

second derivatives exist and will not obtain the sharper estimate (4.34). In the second

part we use the existence of second derivatives to obtain (4.34).

Part 1. Introducing the test function φ defined by (4.33) into the weak formulation

(4.8) we obtain

∑

j

∫

Ω

η2τh,jTkl(Du)τh,jDklu dx =

∫

Ω

(−
∑

j

Tkl(Du)|
x+hej

τh,j(η
2)τh,jDklu

+
∑

j

Tkl(Du)∂k(η
2)τ−h,jτh,jul

+ Tkl(Du)∂k(∂jη
2(Ψji − Ψij))

+ fiφi) dx

= I + II + III + IV (4.35)

where we have used the standard properties of difference quotients that can be found

in [Gia93] to “integrate by parts” and to distribute a difference quotient over a product.

We will bound the left hand side of (4.35) from below and the right hand side from

above to get an estimate for the difference quotients of Du. At this point it might seem

sufficient to simply cite our work from Chapter 3 to claim the final estimate. However,

many calculations are different from those that appear in the standard theory. We

have introduced new terms in our test function of the type τ−h,jσh,ju and we must be

careful to introduce approximate second derivatives of the form τh,kDu only and not

more general terms τh,k∂iu. Therefore, let us find bounds for (4.35) from above and

below. Since we will encounter the weight (1 + |Du|p−2 + |Du|p−2
x+hej

) several times,

we will denote it as µh,j. Of course, µh,j converges strongly in L
p

p−2 as h goes to 0 to

(1 + 2|Du|p−2) which we will simply call µ. It will also be convenient to use Ωh to
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denote
(

⋃

j

supp(τh,jη)

)

⋃

supp(η)

which approximates supp(η) in the limit as h goes to 0.

We use the estimate (4.25) from Lemma 4.2 to bound the left hand side of (4.35) from

below by

∑

j

∫

Ω

η2τh,jTkl(Du)τh,jDklu dx ≥ c(c1, p)
∑

j

∫

Ω

η2(1 + |Du|p−2+ |Du|p−2
x+hej

)|τh,jDu|2 dx

= c(c1, p)
∑

j

∫

Ω

µh,j|τh,jDu|2 dx. (4.36)

We now turn to maximizing each of the integrals on the right-hand side of (4.35).

Using the bound (4.10) for T we see

|I| =

∣

∣

∣

∣

∣

∫

Ω

∑

j

Tkl(Du)|
x+hej

τh,j(η
2)τh,jDklu dx

∣

∣

∣

∣

∣

≤
∑

j

c(c2, n)

∫

Ω

(1 + |Du|p−2
x+hej

)|Du|x+hej
|τh,j(η

2)||τh,jDu| dx

≤
∑

j

c(c2, n)

∫

Ω

µh,j|Du|x+hej
|τh,j(η

2)||τh,jDu| dx. (4.37)

From the “Leibniz-rule” for different quotients,

τh,jη
2 = τh,jη

(

η + η|x+hej

)

.

Since η is smooth we see η|x+hej
= η(x) +

∫ h

0
d
dt
η(x + tej) dt ≤ η(x) + hc(∇η) and

therefore

|τh,j(η
2)| ≤ c(∇η)(η + h). (4.38)

On the other hand,

h|τh,jDu| ≤ |Du| + |Du|x+hej
. (4.39)
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We combine (4.38) and (4.39) in (4.37) and apply Young’s inequality to get

|I| ≤ c(c1, c2, p, n,∇η)
∑

j

∫

Ωh

µh,j(|Du|2 + |Du|2
x+hej

) dx+

+ ε(c1, p)
∑

j

∫

Ω

η2µh,j|τh,jDu|2 dx (4.40)

where we have written explicitly the dependence of ε on the parameters appearing in

the constant in (4.36) to make clear that ε need only be small enough to merge into this

term, along with other terms of this type appearing in the later computations.

To estimate the second integral, we must “integrate by parts” with one of the differ-

ence quotients. Doing this we have, employing the bound (4.28) of Lemma (4.3) along

with (4.10) and Young’s inequality,

|II| =

∣

∣

∣

∣

∣

∑

j

∫

Ω

τh,j(Tkl(Du)∂kη
2)τh,jul dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

j

∫

Ω

[

τh,j(Tkl(Du))∂kη
2 + Tkl(Du)|x+hej

τh,j∂k(η
2)
]

τh,jul dx

∣

∣

∣

∣

∣

≤ c(c2, p, n)
∑

j

∫

Ω

µh,j|τh,jDu|η|∇η||τh,ju| dx

+ c(c2, n)
∑

j

∫

Ωh

µh,j|Du|x+hej
|τh,j∇(η2)|τh,ju| dx

≤ c(c1, c2, p, n,∇η,∇2η)
∑

j

∫

Ωh

µh,j(|Du|2 + |Du|2
x+hej

+ |τh,ju|2) dx

+ ε(c1, p)
∑

j

∫

Ω

η2µh,j|τh,jDu|2 dx. (4.41)

The third integral breaks up naturally into two parts, which we will call IIIa and IIIb.

For IIIa we have applying Hölder’s inequality

|IIIa| =

∣

∣

∣

∣

∫

Ω

Tkl(Du)(∂k∂jη
2)(Ψjl − Ψlj) dx

∣

∣

∣

∣

≤ c(∇2η)

∫

supp(η)

|T(Du)|p′ + |Ψ|p dx. (4.42)
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From (4.10) we have the estimate |T(Du)|p′ ≤ c(c2, p, n)(1 + |Du|p). Also, we can

estimate |Ψ|p ≤ c(n)
∑

j |τ−h,jσh,ju|p to arrive at our final bound for IIIa,

|IIIa| ≤ c(∇2η)

∫

supp(η)

c(c2, p, n)(1 + |Du|p) + c(n)
∑

j

|τ−h,jσh,ju|p dx

≤ c(∇2η)

∫

supp(η)

c(c2, p, n)(1 + |Du|p) + c(n, supp(η),Ω)
∑

j

|∇σh,ju|p dx (4.43)

where we have used the fact that there exists a constant c(supp(η),Ω) independent of

h such that for all g in W 1,p
0 (Ω),

∫

supp(η)

|τh,jg|p dx ≤ c(supp(η),Ω)

∫

supp(η)

|∂jg|p dx.

For second part of integral III we have

IIIb =
∑

j

∫

Ω

(∂jη
2Tkl(Du) − ∂lη

2Tkj(Du))τ−h,j∂kσh,jul dx

We integrate the difference quotient by parts to get IIIb = IIIbi + IIIbii where

|IIIbi| =

∣

∣

∣

∣

∣

∑

j

∫

Ω

∂jη
2τh,jTkl(Du)∂kσh,jul − ∂lη

2τh,jTkj(Du)∂kσh,jul) dx

∣

∣

∣

∣

∣

and

|IIIbii| =

∣

∣

∣

∣

∫

Ω

Tkl(Du)|
x+hej

(τh,j∂jη
2)∂kσh,jul − Tkj(Du)|

x+hel
(τh,j∂lη

2)∂kσh,jul

∣

∣

∣

∣

.

Using estimate (4.28) in Lemma 4.3 together with Hölder’s inequality we easily see
∣

∣

∣

∣

∣

∑

j

∫

Ω

∂jη
2(τh,jTkl(Du)∂kσh,jul dx

∣

∣

∣

∣

∣

≤
∑

j

c(c2, p, n)

∫

Ω

µh,jη|∇η||τh,jDu||∇σh,ju| dx.

(4.44)

The second term in IIIbi requires a bit more care before we can apply Lemma 4.3

directly. However, we may rewrite it using the Kronecker delta before applying (4.28)

to get
∣

∣

∣

∣

∣

∑

j

∫

Ω

∂lη
2(τh,jTkm(Du)δmj∂kσh,jul dx

∣

∣

∣

∣

∣

≤
∑

j

c(c2, p, n)

∫

Ω

µh,jη|∇η||τh,jDu||∇σh,ju| dx.

(4.45)
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Combining (4.44) and (4.45) together with Young’s inequality we have the estimate for

IIIbi

|IIIbi| ≤ c(c1, c2, p, n)
∑

j

∫

Ω

µh,j|∇η|2|∇σh,ju|2 + ε(c1, p)
∑

j

∫

Ω

η2µh,j|τh,jDu|2 dx.

(4.46)

On the other hand, IIIbii is easy to estimate as it has no singular terms. We may apply

Hölder’s inequality together with (4.10) to get

|IIIbii| ≤
∑

j

c(c2, p, n,∇2η)

∫

Ωh

1 + |Du|px+hej
+ |∇σh,ju|p dx (4.47)

Our last term to estimate is IV, which can be written

|IV| =

∣

∣

∣

∣

∣

∑

j

∫

Ω

fiη
2τ−h,jτh,jui +

∑

j

∫

Ω

fi∂jη
2(Ψij − Ψji)

∣

∣

∣

∣

∣

.

For the latter term we obtain from Hölder’s inequality
∣

∣

∣

∣

∣

∑

j

∫

Ω

fi∂jη
2(Ψij − Ψji) dx

∣

∣

∣

∣

∣

≤
∑

j

c(n)

∫

Ω

η2|f |2 + |∇η|2|τh,jσh,ju|2 dx (4.48)

For the former, the estimate is completely standard from the theory of difference quo-

tients, such as done in Chapter 3, and we have
∣

∣

∣

∣

∣

∑

j

∫

Ω

fiη
2τ−h,jτh,jui dx

∣

∣

∣

∣

∣

≤ c(c1, p, supp(η),Ω)

∫

Ω

η2|f |2 dx+

+ ε(c1, p)
∑

j

∫

Ω

η2|τh,j∂ju|2 dx (4.49)

We would like to bound the last term in (4.49) in terms of difference quotients of Du

so as to incorporate it into (4.36). To do this, we use (4.21) in (4.49) just as in the a priori

estimate to conclude
∣

∣

∣

∣

∣

∑

j

∫

Ω

fiη
2τ−h,jτh,jui dx

∣

∣

∣

∣

∣

≤ c(c1, p, supp(η),Ω)

∫

Ω

η2|f |2 dx

+ c(c1, p)
∑

j

∫

Ω

|∇η|2|τh,ju|2 dx + ε(c1, p)
∑

j

∫

Ω

η2|τh,jDu|2. (4.50)
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Now we may combine (4.40), (4.41), (4.43), (4.46), (4.47), (4.48), and (4.50) together

with the lower bound (4.36) to arrive at the estimate for the difference quotients

∑

j

∫

Ω

µh,j|τh,jDu|2 dx ≤ c(c1, p, n,∇η,∇2η, supp(η),Ω)

[

∫

Ω

η2|f |2 dx+

∑

j

∫

Ωh

|∇σh,ju|2 + |∇σh,ju|p + µh,j

[

|Du|2 + |Du|2
x+hej

+ |τh,ju|2 + |∇σh,ju|2
]

dx

]

.

(4.51)

Using the absolute continuity of the integral together with the strong Lp convergence

of τh,ku to ∂ku and the Lp boundedness of σh,j∂ju proven in Lemma 4.1 we see that

the right hand side of (4.51) is uniformly bounded from above as h → 0. Since the

left-hand side of (4.51) bounds
∑

j

∫

Ω
η2|τh,jDu|2 dx from above, and since η is an arbi-

trary interior cutoff function,we conclude that for each j, ∂jDu ∈ L2
loc(Ω). Employing

(4.21) we conclude further that u ∈ W 2,2
loc (Ω). Actually, u is even more regular than

this. Since η2µh,j|τh,jDu|2 is bounded in L1(Ω) we conclude that some subsequence of

η
√
µh,jτh,jDklu converges weakly in L2(Ω). From the strong convergence of

√
µh,j in

L2 to µ and the strong convergence in L2 of τh,jDklu to ∂jDklu we see that the weak

limit must be η
√
µ∂jDklu and therefore

η
√
µ∂jDklu ∈ L2(Ω). (4.52)

However, the bounds given in (4.51) depend on the second derivatives of η among

other things and are therefore not as sharp as the the desired estimate (4.34). We now

use (4.52) to obtain (4.34).

Part 2. From (4.52) together with the growth estimate (4.3) it follows that ∂jTij(Du) is

in Lp′

loc(Ω). From this, we are able to integrate the weak formulation (4.8) by parts to

conclude that

−
∫

Ω

∂jTij(Du)φi dx =

∫

Ω

fiφi dx. (4.53)
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for all φ in J and by continuity for all φ in Jp(Ω′) every open Ω′ with closure in Ω.

Consider the test function φ ∈W 1,2
0 (Ω) defined by

φi =
∑

j

[

−η2∂jτh,jui + ∂jη
2τh,iuj − ∂jη

2τh,jui

]

= −
∑

j

[

∂j

(

η2τh,jui

)]

+ ∂jη
2τh,iuj (4.54)

An easy computation shows that φ is also divergence free and lies in Lp(Ω) and there-

fore is a legitimate test-function for (4.53). Indeed a simple mollification argument

shows that it is in the closure in Lp(Ω) of J . Therefore, introducing it in (4.53), we see

∑

j

∫

Ω

∂kTki(Du)∂j

(

η2τh,jui

)

dx =
∑

j

∫

Ω

∂iTij(Du)∂kη
2τh,ju

k dx +

∫

Ω

fiφi dx (4.55)

We would like to integrate both derivatives by parts in the left hand side of (4.55). This

is justified since Tij(Du) is in W 1,p′

loc and η2τh,jui is in W 1,p
0 , and the result is

∑

j

∫

Ω

η2∂jTki(Du)∂kτh,jui dx =
∑

j

[
∫

Ω

∂iTij(Du)∂kη
2τh,ju

k − ∂jTki(Du)τh,jui∂kη
2 dx

]

+

∫

Ω

fiφi dx

(4.56)

We now take the limit as h tends to zero. None of the terms on the right hand

side present any difficulty but we must be careful with the term on the left. Since

η∂jTki(Du) is in Lp′ and since we have established η∂kτh,jui converges strongly only

in L2 we cannot immediately use continuity arguments. However, we may write each

integrand as
η√
µ
∂jTki(Du)η

√
µ∂kτh,jui.
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From (4.3) we see that

η√
µ
|∂jTki(Du)| =

η√
µ
|∂rsTki(Du)∂jDrsu|

≤ c(c2)η
1 + |Du|p−2

√
µ

|∂jDu|

≤ c(c2)η
√
µ|∂jDu|

(4.57)

which implies η√
µ
∂jTki(Du) is inL2. From the weak convergence inL2 of η

√
µh,j∂kτh,jui

to η
√
µ∂k∂jui and the strong convergence of

√
µh,j to

√
µ in L2 we see η

√
µ∂kτh,jui

converges weakly in L2 to η
√
µ∂k∂jui. Therefore, we are justified in taking this limit

on the left-hand side of (4.56) and we arrive at
∫

Ω

η2∂jTki(Du)∂k∂jui dx =

∫

Ω

∂iTij(Du)∂kη
2∂ju

k − ∂jTki(Du)∂jui∂kη
2 dx

+

∫

Ω

fi

(

−η2∂j∂jui + ∂jη
2∂iuj − ∂jη

2∂jui

)

.

(4.58)

Now we estimate from above and below similar to when we when we proved the exis-

tence of second derivatives. However, the estimates are cleaner and easier. The lower

bound follows directly from (4.2) and we have (using the fact that T is symmetric)

∫

Ω

η2∂jTki(Du)∂k∂jui dx =

∫

Ω

η2∂jTki(Du)∂jDkiu dx

≥ c1
∑

j

∫

Ω

η2(1 + |Du|p−2)|∂jDu|2 dx. (4.59)

For the first integral on the right-hand side of (4.58) we use (4.3) together with Young’s

inequality to obtain

∣

∣

∣

∣

∫

Ω

∂iTij(Du)∂kη
2∂ju

k − ∂jTki(Du)∂jui∂kη
2 dx

∣

∣

∣

∣

≤

c(c1, c2, n)

∫

Ω

(1 + |Du|p−2)|∇η|2|Du|2 dx+

+ ε(c1)
∑

j

∫

Ω

η2(1 + |Du|p−2)|∂jDu|2 dx. (4.60)
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The second integral on the right-hand side of (4.58) requires an application of Hölder’s

inequality together with (4.21) to get

∣

∣

∣

∣

∫

Ω

fi

(

−η2∂j∂jui + ∂jη
2∂iuj − ∂jη

2∂jui

)

dx

∣

∣

∣

∣

≤

c(c1)

∫

Ω

η2|f |2 dx + c(c1, n)

∫

Ω

|∇η|2|∇u|2 dx+

+ ε(c1)
∑

j

∫

Ω

η2(1 + |Du|p−2)|∂jDu|2 dx. (4.61)

Combining (4.59), (4.60) and (4.61) together with a final application of (4.21) gives us

the estimate

∫

Ω

η2

[

|∇2u|2 +
∑

j

(1 + |Du|p−2)|∂jDu|2
]

dx

≤ c(c1)

∫

Ω

η2|f |2 dx + c(c1, c2, n)

∫

Ω

|∇η|2|
[

|∇u|2 + (1 + |Du|p−2)Du|2
]

dx

from which (4.34) follows easily.

�
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Chapter 5

Applications to non-Newtonian Fluids

In this Chapter we apply Theorem 4.1 to the steady and unsteady motion of an incom-

pressible fluid with equation of motion (1.1). We return our attention to the specific

model (1.1) in which the stress tensor T can be written

Tij = 2(ν1 + ν2|Du|2)Diju.

5.1 The Steady Case

Our first object of study is the steady case

−∂j(2(ν1 + ν2|Du|2)Diju) = −uj∂jui − ∂iπ + fi

∂iui = 0

u|∂Ω = 0. (5.1)

Since the weak solutions of the Stokes-like system (2.1) come from such a regular

space, W 1,4
0 (Ω), the inertial term poses little problem for the regularity theory. Indeed,

we define a weak solution of (5.1) to be a function u in J1,4
0 (Ω) such that

∫

Ω

2(ν1 + ν2|Du|2)Diju∂iφj dx =

∫

Ω

−uj∂juiφi + fiφi dx (5.2)

for all φ in J . Its regularity follows directly from Theorem 4.1.

Theorem 5.1 Let Ω be a bounded open subset of R3. If f is in L2(Ω) then every weak solution

56



Chapter 5. Applications to non-Newtonian Fluids

of (5.2) is in W 2,2
loc (Ω) and there exists a pressure π in W

1, 4
3

loc (Ω) such that u and π satisfy (5.1)

almost everywhere in Ω.

Proof:

If a weak solution u exists, then from Sobolev embedding of W 1,4
0 (Ω) into C(Ω) we

see that u is in L∞(Ω) an therefore the term uj∂jui is in L4(Ω) and hence also L2(Ω).

Therefore u is a weak solution of system (2.1) with right hand side

Fi = −uj∂jui + fi

in L2(Ω). From 4.1 we see then that u ∈ W 2,2
loc (Ω). From Section 2.2 we recall that there

exists a pressure π in L
4
3 (Ω) such that for all φ in C∞

0 (Ω),

∫

Ω

2(ν1 + ν2 |Du|2)Diju∂jφi + π (∇ · φ) − Fiφi dx = 0

Integrating this equation by parts we obtain

∫

Ω

[

∂j(2(ν1 + ν2 |Du|2)Diju) + Fi

]

φi dx =

∫

Ω

π (∇ · φ) dx. (5.3)

Therefore, π is in W
1, 4

3
loc (Ω) and

−∂j(2(ν1 + ν2 |Du|2)Diju) = −∂iπ + −uj∂jui + fi

almost everywhere.

�

Therefore, to complete the theory we need only show that weak solutions exist. We do

this along the same lines as can be done for stationary solutions of the Navier-Stokes

equations using the Leray-Schauder fixed point theorem. Our proof is different from

that used at the end of Chapter 3 for solutions of the stationary Vector Burgers-like

equation since we do not have a boundary proof and therefore cannot use the compact

embedding of W 2,2(Ω) into W 1,4(Ω).
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Theorem 5.2 There exist weak solutions of (5.1).

Proof:

We show solutions of (5.2) exist from the unique solvability of (2.1) and the Leray-

Schauder fixed point theorem. Indeed, consider the function Ft defined by the map

that takes v in W 1,p
0 (Ω) to the unique u in W 1,p

0 (Ω) that solves
∫

Ω

2(ν1 + ν2|Du|2)DijuDijφ dx =

∫

Ω

(−vj∂jvi + fi)φi dx.

for all φ in W 1,p
0 (Ω). We show now that this map is compact, so let us suppose that

{vr} is a sequence in W 1,p
0 (Ω) that converges weakly inW 1,p

0 (Ω) and therefore strongly

in L4(Ω). Let ur = F(vr). Then it follows from (5.2) and an integration by parts that
∫

Ω

(

2(ν1 + ν2|Dur|2)Diju
rDij(u

r − us) − 2(ν1 + ν2|Dus|2)Diju
sDij(u

r − us)
)

dx =
∫

Ω

−(vr
j − vs

j )∂jv
r
i (v

r
i − vs

i ) − vs
j (∂j(v

r
i − vs

i ))(v
r
i − vs

i ) dx (5.4)

From (5.4) together with Corollary 4.1 (or Appendix A), Korn’s inequality [Neč66],

and Hölder’s inequality we see

c(Ω)(ν1||∇(ur − us)||22 + ν2||∇(ur − us)||44) ≤

||∇vr||||vr − vs||24 + c(Ω, ν1)||vs||2∞||vr − vs||2

which, recalling Sobolev embedding, shows from the uniform boundedness of ||vr||2
and ||vr||∞ and the strong convergence of {vr} in L4(Ω) that {ur} is Cauchy in W 1,4

0

and therefore also the desired compactness. To apply the Leray-Schauder principle

we need only show now that any solution of u = λF(u) is bounded uniformly for λ ∈

[0, 1]. However, since
∫

Ω
uj∂juiui vanishes we obtain from (4.9) and Korn’s inequality

the estimate

||∇w||34 ≤ c(Ω)λ3||f ||(W 1,p
0 )∗

which implies the existence of solutions of (5.2).

�
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5.2 The Unsteady Case

We now turn our attention to showing the existence of regular solutions of (1.1).

Theorem 5.3 Let Ω be a bounded domain in R3, let f be in L2(0, T ;L2(Ω)), let u0 be in J .

Then there exist functions u and π that satisfy (1.1) almost everywhere in Ω × [0, T ] with

||u(t) − u0|| → 0

as t→ 0+. Moreover, u ∈ L4(0, T ; J1,4
0 ) and

√
tu ∈W 1,2(Ω× [0, T ])∩L2(0, T ;W 2,2(Ω′) for

every open set Ω′ with closure contained in Ω.

Let {ak} be a basis for J1,4
0 (Ω) that we will take to be orthogonal in J(Ω) . To begin,

we construct Galerkin solutions in the usual way. We let uk =
∑k

j=1 c
j,kaj where the

functions cj,k satisfy the ordinary differential equation

d

dt
cj,k = −

k
∑

l,m=1

cl,kcm,k(al · ∇am, aj) − (Dlmuk, Dlmaj) + (f , aj) (5.5)

with initial condition cj,k(0) = (aj ,u0). By the standard theory of ordinary differential

equations, we find that the cj,k exist on some interval [0, Tk].

Multiplying (5.5) by cj,k and summing on j we obtain in the same way as for the

Navier-Stokes equations the energy estimate for the Galerkin approximations

1

2

d

dt
||uk||2 + (2

(

ν1 + ν2|Duk|2
)

Diju
k, Diju

k) = (f ,uk). (5.6)

From Gronwall’s inequality and (4.9) we arrive in the usual way at

||uk(t)||2 +

∫ t

0

∫

Ω

2ν1|Duk|2 + 2ν2|Du|4 dx ds ≤ B1 (5.7)

where B1 is finite and depends only on ||u0|| and ||f ||L2(0,Tk;L2(Ω)). Therefore, we can

extend the interval of existence of the cj,k to any interval [0, T ]. We shall now work

with some arbitrary but fixed T > 0.
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The second estimate, roughly based on an a priori estimate found in [Hey93], follows

from multiplying (5.5) by d
dt
cj,k and summing on j to get, using u̇ to denote d

dt
u,

(2
(

ν1 + ν2|Duk|2
)

Dlmuk, Dlmu̇k) +
3

4
||u̇k||2 ≤ ||uk · ∇uk||22 + ||f ||22. (5.8)

We would now like to bound the inertial term using the first estimate (5.7) and apply

Gronwall’s inequality to (5.8). First we show that (2
(

ν1 + ν2|Duk|2
)

Dlmuk, Dlmu̇k)

is a derivative. Indeed, 2(Dlmuk, Dlmu̇k) = d
dt
||Duk||2 and 2(|Du|2Dlmuk, Dlmu̇k) =

1
4

d
dt
||Du||44 and therefore

(2
(

ν1 + ν2|Duk|2
)

Dlmuk, Dlmu̇k) =
d

dt

[

ν1||Duk||2 +
ν2

2
||Duk||44

]

=
d

dt
F(Duk). (5.9)

Multiplying (5.8) by t we obtain using (5.9),

d

dt

[

tF(Duk)
]

+
3t

4
||u̇k||2 ≤ t||uk · ∇uk||22 + t||f ||22 + F(Duk(0)). (5.10)

We now want to bound the convective term in such a way that we can apply Gron-

wall’s inequality. As in the stationary case, we can use W 1,4 control to our advantage

here. From Sobolev’s inequality we have ||uk · ∇uk|| ≤ ||∇uk||||∇uk||3. From the

boundedness of Ω and Korn’s inequality it follows that

||uk · ∇uk|| ≤ c(Ω)||Du||44. (5.11)

Thus, from Gronwall’s inequality applied to (5.10) combined with (5.11) we see

tν1||Duk||22 + tν2||Duk||44 +

∫ t

0

s||u̇k(s)||22 ds. ≤ B2(Ω, B1) (5.12)

We now turn to the convergence properties of the sequence uk. As is usual, we shall

speak of convergence of subsequences of uk as convergence of the sequence itself.

Since our estimates do not give us control in advance of the second derivatives, we
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are not able to to prove convergence properties as simply as in the case of the spectral-

Galerkin method for the Navier-Stokes equations. On the other hand, since we have

more information than is traditional for weak solutions, we are able to prove the esti-

mates more easily than those for weak solutions. From (5.7) we have

∫

ΩT

|uk|2 dx dt ≤ TB1,

so uk converges weakly in L2(ΩT ) to some u. From bounds (5.7) and (5.12) we have

∫

Ω×[δ,T ]

|uk|2 + |u̇k|2 + |∇uk|2 ≤ (1 + T )B1 +
1

δ
B2

and so uk converges weakly in W 1,2(Ω[δ,T ]) and therefore strongly in L2(Ω[δ,T ]) to u.

Furthermore,

∫

ΩT

|u− uk|2 =

∫

Ω×[0,δ]

|u− uk|2 +

∫

Ω×[δ,T ]

|u− uk|2

≤ 2||u||2L2(Ω×[0,δ]) + 2||uk||2L2(Ω×[0,T ]) +

∫

Ω×[δ,T ]

|u− uk|2

≤ 2||u||L2(Ω×[0,δ]) + 2δB1 +

∫

Ω×[δ,T ]

|u − uk|2. (5.13)

Taking limits in k we have using the strong convergence of uk on Ω × [δ, T ] that

lim supk→∞ ||uk −u||2L2(ΩT ) ≤ c2||u||L2(Ω×[0,δ]) + δB1. Since δ is arbitrary we have shown

that {uk} converges strongly in L2(ΩT ) to u.

From the bound (5.12) we see that for every t > 0, {uk(t)} converges weakly inW 1,4
0 (Ω)

to some v(t) and thus strongly in L4(Ω) and L2(Ω).

Let us show that v(s) = u|t=s. In particular, since u is in W 1,2(Ω × [δ, T ]), it has trace

values u(t) in L2(Ω) for each t > 0. We need to show that u(t) = v(t). However, if w is

any function in W 1,2
0 (Ω), then for t2 > t1 > 0 we have

∫

Ω

(t2 − t1)(ui(x, t2) − uk
i (x, t2))wi(x) dx =
∫

Ω×[t1,t2]

(t− t1)(u̇i − u̇k
i )wi(x) + (ui − uk

i )wi(x) dx dt. (5.14)
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Thus, by weak convergence of u̇k to u̇ in L2(Ω× [t1, t2]) and by weak convergence of uk

to u in L2(Ω × [t1, t2]) we have uk(t2) converges weakly in L2(Ω) to u(t2). Since uk(t2)

converges strongly in L2(Ω) to v(t2), it must be that v(t2) and u(t2) are the same. Since

t2 is arbitrary, we have v(t) is in fact the trace value of u at t.

Now we turn to showing that u is a solution of the PDE. First we deal with the con-

vective term. If φ is a smooth function,
∫ T

0

∫

Ω

uk · ∇ukφ− u · ∇uφ dx dt ≤
∫ T

0

∫

Ω

|uk − u||∇uk||φ| + |u||∇(uk − u)||φ| dx dt

(5.15)

By strong convergence of {uk} to u in L2(ΩT ) and by weak convergence of {∇uk} to

∇u in L2(ΩT ) we see that uk · ∇uk converges weakly in L2(ΩT ) to u · ∇u.

Next we deal with the viscosity term. Since {Duk} remains bounded in L4(ΩT ) we

have 2
(

ν1 + ν2|Duk|2
)

Du remains bounded in L
4
3 (ΩT ), and so converges weakly to

some tensor T in L
4
3 (ΩT ). We now show T = 2 (ν1 + ν2|Du|2)Du via a simple mono-

tonicity technique. If φl is any function of the form
∑l

j=1 bj(t)a
j with bj continuous in

t then (5.5) and (4.11) imply for k ≥ l
∫ T

δ

∫

Ω

(u̇k + uk · ∇uk − f) · φl dx dt = −
∫ T

δ

∫

Ω

2
(

ν1 + ν2|Duk|2
)

Diju
kDijφ

l dx dt.

Taking the limit in k using the weak convergence of u̇k to u̇, the weak convergence of

uk · ∇uk to u · ∇u, and the weak convergence of T(Duk) to T we see
∫ T

δ

∫

Ω

(u̇ + u · ∇u − f) · φl dx dt = −
∫ T

δ

∫

Ω

TijDijφ
l dx dt. (5.16)

In particular, for φl = ul we have
∫ T

δ

∫

Ω

(u̇ + u · ∇u− f) · ul dx dt = −
∫ T

δ

∫

Ω

TijDiju
l dx dt.

Taking the limit in l using the strong convergence of ul to u in L2(ΩT ) and the weak

convergence of ∇ul to ∇u in L4(ΩT ) and the fact that
∫

Ω
u · ∇u · u dx vanishes we see

∫ T

δ

∫

Ω

(u̇ + u · ∇u− f) · ul dx dt = −
∫ T

δ

∫

Ω

TijDiju
l dx dt. (5.17)
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From (4.9) we have
∫ T

δ

∫

Ω

[

2
(

ν1 + ν2|Duk|2
)

Diju
k − 2

(

ν1 + ν2|Dφl|2
)

Dijφ
l
]

Dij(u
k − φl) dx dt ≥ 0

and therefore, from (5.5),
∫ T

δ

∫

Ω

−2
(

ν1 + ν2|Dφl|2
)

Dij(u
k − φl) + (u̇k + u · ∇u − f)φl − (u̇k − f)uk dx dt ≥ 0.

Taking the limit as before (now also using the weak convergence of u̇k and the strong

convergence of u in L2(Ω × [δ, T ]) to handle the u̇ku term) and using (5.17) we see
∫ T

δ

∫

Ω

(Tij − 2
(

ν1 + ν2|Dφl|2
)

)Dij(u− φl) dx dt ≥ 0

and by density of functions of the type φl in L4(δ, T ; J1,4
0 (Ω)) and continuity of the

previous integral on φl in this space we see
∫ T

δ

∫

Ω

(Tij − 2
(

ν1 + ν2|Dφl|2
)

)Dij(u− φ) dx dt ≥ 0 (5.18)

for all φ in L4(δ, T ; J1,4
0 (Ω)). Letting φ = u− εaj and taking the limit in epsilon we see

∫ T

δ

∫

Ω

(Tij − 2
(

ν1 + ν2|Du|2
)

Diju)Dij(u − φ) dx dt = 0

Since the above is true also for φ = u + εaj we determine that, in fact,
∫ T

δ

∫

Ω

(Tij − 2
(

ν1 + ν2|Du|2
)

Diju)Dij(a
j) = 0. (5.19)

Let us now show that u satisfies the initial condition. From (5.5) we see

(uk(t), al(t)) =

(u0, a
l(0)) +

∫ t

0

∫

Ω

−uk · ∇uk · al − 2
(

ν1 + ν2|Duk|2
)

Diju
kDija

l + f · al dx dt

Taking the limit in k, using now also the strong convergence in L2(Ω) of uk to u we

obtain

(u(t), al(t)) =

(u0, a
l(0)) +

∫ t

0

∫

Ω

−u · ∇u · al − 2
(

ν1 + ν2|Du|2
)

DijuDija
l + f · al dx dt.
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Therefore u(t) converges to u(0) weakly in L2(Ω). However, from the energy inequal-

ity (5.6) we see that ||uk(t)||2 tends to ||uk(0)||2 uniformly in t and therefore ||u(t)||2

tends to ||u0||2. Thus we have established that u(t) converges strongly to u0 as t→ 0+.

We are now in a position to show that u has second spatial derivatives. Although

we were not able to control these in taking the limit of the uk, we have ample control

over all other aspects of the equation to make this possible. In particular, if ξ is any

continuous function, then letting φl = ξ(t)al(x) in (5.16) we see, using (5.19),

∫ T

δ

ξ(t)

∫

Ω

2
(

ν1 + ν2|Du|2
)

DijuDija
j + (u̇ + u · ∇u − f) · al dx dt = 0.

Now since
∫

Ω

2
(

ν1 + ν2|Du|2
)

DijuDija
j + (u̇ + u · ∇u − f) · aj dx

is in L
4
3 (δ, T ) and continuous functions are dense in L4(δ, T ), the Rietz-Ritz represen-

tation theorem implies

∫

Ω

Tij(Du)Dija
j = −

∫

Ω

(u̇ + u · ∇u − f) · aj dx

at almost every t in [δ, T ]. Repeating this process for each of the countably many

functions aj , using the fact that a countable collection of zero measure sets has zero

measure, we see that (5.2) holds for every basis function aj for almost every t. Since

u̇ + u · ∇u− f is in L2(Ω) for almost every t we obtain immediately from Theorem 4.1

and the fact that δ is arbitrary that at almost every t > 0, u is in W 2,2
loc (Ω). Moreover, at

almost every t, the estimate (4.34) from 4.1 holds. However, we are not quite in a posi-

tion to claim that u ∈ L2(δ, T ;W 2,2(Ω′)) since we have not determined that ||u||W 2,2(Ω′)

is measurable. However, since

t||τh,mη
2∇u||2 ≤ c(Ω′,Ω)t||∂m∇u||2L2(Ω′)

≤ c(Ω′,Ω)
[

t||f ||22 + t||u̇||22 + t||u · ∇u||22 + t||∇u||22 + t||Du||44
]

(5.20)
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we get from the Dominated Convergence Theorem and the almost everywhere con-

vergence of t||τh,mη
2∇u|| to t||∂mη

2∇u|| that
√
tu ∈ L2(0, T ;W 2,2(Ω′)) for every open

set Ω′ with closure contained in Ω. Finally, we obtain in the usual way from (5.16) and

the regularity of u the existence of a π with ∇π ∈ L
4
3
loc(Ω) such that u and π satisfy (1.1)

almost everywhere.

�

We complete our discussion of the time-dependent case by mentioning that our solu-

tion is unique.1 Indeed, let v and u be two such solutions and let w be their difference.

Then we see that w satisfies

1

2

d

dt
||w||2 + 2

∫

Ω

(ν1 + ν2|Du|2)Du− (ν1 + ν2|Dv|2)Dv dx = −
∫

Ω

wiDijuwj dx.

in L1. Applying estimate (4.11) we see then that at almost every time

1

2

d

dt
||w||2 + 2ν1||Dw||2 ≤ −

∫

Ω

wiDijuwj dx.

We now use Hölder’s inequality and a Sobolev inequality to get at almost every time

1

2

d

dt
||w||2 + 2ν1||Dw||2 ≤ c(Ω)||∇w|| 32 ||w|| 12 ||Du||

≤ ν1||∇w||2 + c(Ω, ν1)||Du||44||w||2.

Thus we find

1

2

d

dt
||w||2 + ν1||Dw||2 ≤ c(Ω, ν1)||Du||44||w||2

and using the fact that w converges strongly in L2 to 0 as t tends to 0 we apply Gron-

wall’s inequality and find that ||w|| = 0 at almost every time. We have proven

Theorem 5.4 The solutions of (1.1) with the regularity of those found in Theorem 5.3 are

unique.

1Actually, it is not hard to show that our solutions are also weak solutions in the sense of La-
dyzhenskaya and are therefore unique by her arguments.
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Epilogue

We have presented in this thesis an approach for studying interior regularity of elliptic

and parabolic systems with solenoidal constraint. Unfortunately, we have left many

questions unanswered. What we have shown is that if f is in L2(Ω × [0, T ]) and u0 is

in J , then there exists a solution of

ut + u · ∇u = −∇π + 2 div((ν1 + ν2|Du|2)Du) + f

div u = 0 (6.1)

u|∂Ω = 0

u|t=0 = u0

such that for every open set Ω′ with closure contained in Ω u has second derivatives

in L2(Ω′ × [0, T ]) and that tu has a time derivative in L2(Ω× [0, T ]). Thus we naturally

ask whether we can extend these results up to smooth portions of the boundary, and

whether higher regularity of u can be obtained in time and space. We hope with these

final words to briefly outline some of the difficulties involved in extending our results

to answer these questions.
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6.1 Boundary Regularity

We note from the method of proof in Theorem 5.3 that a boundary regularity proof

(e.g. u in W 2,2(Ω)) of the Stokes-like system

−2∂j

((

ν1 + ν2 |Du|2
)

Diju
)

= ∂iπ + fi

∂iui = 0

u|∂Ω = 0.

(6.2)

would translate immediately to boundary regularity of (6.1). The central difficulty for

proving boundary regularity of(6.2) is the same as that of interior regularity, namely

that we need more regularity from the pressure than that which arises naturally for

weak solutions, as seen in Chapter 4. We avoided this difficulty in the interior case by

using a solenoidal test function. However, we do not have even for the Stokes system

a solenoidal test function approach for boundary regularity. Since such an approach

to boundary regularity has not yet been obtained for the well studied Stokes system,

it seems that seems that without a truly remarkable result we must work with the

pressure. Recall that the troublesome term to estimate is

∫

Ω

πη (∇η · ∂i∂iu) dx.

So it would be sufficient to show that π is in L2(Ω). From Theorem 4.1 we deduce that

the pressure is in W
1,4/3
loc (Ω) as well as in L

4
3 (Ω). Such a result by itself would certainly

be useless in proving something about π up to the boundary since one can imagine

many functions that are smooth in a domain but have a singularity of arbitrary growth

at a boundary point (e.g. 1/|x − x0|q for x0 a boundary point of Ω). However, we also

obtain from Theorem 4.1 a growth estimate which could say something about π up to

the boundary. Let us take for the sake of exposition Ω to be the cube Q in R3 defined

by {x : |x1| < 1, |x2| < 1, 0 < x3 < 2}. Let ξδ be a cut-off function on [0, 2] that is 1

on [δ, 1]. It is easy to show that we can find such functions ξδ such that |∇ξδ| ≤ c
δ

for
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some fixed constant c. Let ξ(x1, x2) be an arbitrary cut-off function on the unit ball of

R2. Then ηδ(x) defined by ξ(x1, x2)ξδ(x3) is a cut-off function on Q and if we define

Qδ{x ∈ Q : x3 > δ} we obtain from the growth estimate of Theorem 4.1
∫

Qδ

|∇π| 43 dx ≤ c(c1, c2, n)

(
∫

Qδ

ν(Du)2 + η2
δ |f |2 dx +

∫

Qδ

|∇ηδ|2
[

|∇u|2 + |Du|4
]

dx

)

≤ c(c1, c2, n)

(
∫

Qδ

ν(Du)2 + |f |2 dx +
1

δ2

∫

Q1\Qδ

[

|∇u|2 + |Du|4
]

dx

)

.

All terms on the right hand side are uniformly bounded in δ except

1

δ2

∫

Q1\Qδ

[

|∇u|2 + |Du|4
]

dx.

Therefore,

lim
δ→0

δ2

∫

Qδ

|∇π| 43 dx = 0.

We are lead to ask, then, what sort of boundary singularity in π might arise in growth

of this type. One might hope that this restricts π to be in a smaller space than L
4
3 (Ω).

However, consider the function πsingular given by π = 1

|x|(
11
4 −ε)

. Then a simple calcula-

tion shows
∫

Qδ

|∇πsingular|
4
3 dx = o(

1

δ2
).

for every ε > 0.

Since 1/|x|( 11
4
−ε) isn’t even in L

4
3 for ε small, we see that our restriction does not, in this

approach, offer useful information at the boundary.

We are not entirely without hope, however. We note that we do not even need that π

lies in L2. If π/
√

ν(Du) is in L2, then we can estimate this term by
∫

Ω

πη (∇η · ∂i∂iu) dx ≤ c(ε)

∫

Ω

|∇η|2 π2

ν(Du)
dx + ε

∫

Ω

η2ν(Du)|∂i∂iu|2 dx,

which would be sufficient to incorporate the final term into the lower bound obtained

by ellipticity. Unfortunately, an estimate of this type would be hard to obtain (even

though it is weaker that an L2 estimate) since it involves a very strong pairing between

the growth of π and ∇u.
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6.2 Higher Time Regularity

To get study higher time regularity one might expect to proceed as in the Navier-

Stokes equations and take derivatives of (6.1) to obtain a sequence of inequalities to

use in Gronwall’s inequality and thereby control growth of higher time derivatives.

For example, this has already been done for a single step higher in [Hey93]. To see

how this works, we will assume for simplicity that f is 0. Then taking the derivative

of (6.1) with respect to time, multiplying by u̇ and integrating over Ω we see

1

2
||u̇||2 + 2

∫

Ω

(ν1Du̇ + ν2Du : Du̇Du)Du̇ dx = −
∫

Ω

ui,tDijuuj,t dx.

By a Sobolev inequality we see

∫

Ω

ui,t∂iujuj,t dx ≤ c||u̇||24||Du||

≤ ν1

2
||∇u̇||2 + c(ν1)||Du||4||u̇||2

which implies

1

2
||u̇||2 +

∫

Ω

ν1|Du̇|2 + ν2(Du : Du̇)2 dx ≤ c(ν1)||Du||4||u̇||2.

Modulo computability conditions on the initial data, this is sufficient to apply Gron-

wall’s inequality. The key here was to find a lower bound for

∫

Ω

(ν1Du̇ + ν2Du : Du̇Du) : Du̇ dx,

namely 0. Actually, this result is a consequence of the ellipticity of the associated

elliptic operator. Indeed, suppose T satisfies condition (4.2). Then

∫

Ω

d

dt
Tij(Du)Diju̇ dx =

∫

Ω

∂klTij(Du)Dklu̇Diju̇ dx

≥ c(c1)

∫

Ω

|∇u̇|2 + |Du|p−2|Du̇|2 dx

which gives an equivalent estimate.
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The next natural estimate in the series is to take the derivative of (6.1) with respect to

time and then multiply by d
dt
P∂j(ν(Du)Diju) (where P is the L2 orthogonal projection

onto divergence free functions). Integrating this over Ω yields,

∫

Ω

1

2
ν(Du)

d

dt
|Du̇|2 +

d

dt
ν(Du)Du :

d

dt
Du̇ dx +

∫

Ω

|P d

dt
(∂j(∇(ν(Du)Diju)))|2 =

−
∫

Ω

u̇j∂jui
d

dt
P∂k(ν(Du)Diku) + uj∂j u̇i

d

dt
P∂k(ν(Du)Diku) dx (6.3)

The problem here is the left-hand side, not the right. We would like to express the

first integral on the left-hand side as a time derivative of some quantity so as to apply

Gronwall’s inequality. Inspection shows that because of the nonlinearity it isn’t a time

derivative. Given the form of the first term, we would perhaps expect to get

d

dt

∫

Ω

1

2
ν(Du)|Du̇|2 dx

which we could make by adding correction terms to (6.3). To do this, though, we

would have to find a control for

∫

Ω

d

dt
ν(Du)Du :

d

dt
Du̇ dx = 2

∫

Ω

ν2Du : Du̇Du :
d

dt
Du̇ dx

which seems elusive.

One might avoid the problem generated by the nonlinearity by multiplying by P∂k∂ku

instead of d
dt
P∂j(ν(Du)Diju). But then the problem shifts to the second term on the

right hand side. We obtain

d

dt

∫

Ω

|∇u̇|2 dx +

∫

Ω

P
d

dt
(∂j(∇(ν(Du)Diju)))P (∂k∂ku̇i) dx =

−
∫

Ω

u̇j∂juiP (∂k∂kui) + uj∂j u̇iP (∂k∂kui) dx (6.4)

We would like to show

∫

Ω

P
d

dt
(∂j(∇(ν(Du)Diju)))P (∂k∂ku̇i) dx (6.5)
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is positive or is bounded from below by a positive term and a term with controlled

growth. This is made difficult by the action of the projection on the product. In the

case of the Navier-Stokes equations, however, (6.5) reduces to just
∫

Ω

|P∆u̇|2 dx

which is clearly positive and allows a successful application of Gronwall’s inequality.

Problems like this related the nonlinearity persist for higher derivatives and must be

overcome to obtain higher time regularity.

6.3 Higher Space Regularity

Higher space derivatives for nonlinear elliptic systems remain a famous open prob-

lem. Because of this notoriety (and thereby implied difficulty), we did not make a

serious attempt to tackle higher space regularity. We summarize briefly here starting

points for the interested reader. For general elliptic equations, Hölder regularity of the

first derivatives can be obtained by the famed de Giorgi theorem, which can be found

with exposition in [Gia93]. Further regularity follows from a bootstrap argument. For

elliptic systems we have some counterexamples, e.g. [Neč75], to show that we cannot

expect everywhere regularity for general elliptic systems. However, these counterex-

amples do not exclude the possibility that it is possible to prove everywhere regularity

for systems with additional structure. In particular, we have the result of Uhlenbeck

[Uhl77] that weak solutions of elliptic systems of the form

∂j

(

F (|∇u|2)∂jui

)

= 0

have Hölder continuous first derivatives. Notice the similarity between this system

and the Poisson-like system considered in Chapter 3. Finally, we remark that in two

dimensions the regularity problems are not the same. Indeed, there is a very recent

preprint [KMS97] which proves that in two dimensions the stationary version of (6.1)

with periodic boundary conditions has classical solutions.
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6.4 Final Words

Despite what we are unable to prove, we must keep in mind what has been accom-

plished. We have shown a new method for obtain interior regularity of elliptic systems

with solenoidal constraint. Moreover, we have extended the class of systems for which

this is possible. We have shown how interior regularity for the elliptic system allows

us to prove (and clarify) interior regularity for the model parabolic system of inter-

est. We have done all this using straight-forward, classically motivated, techniques.

Therefore, our failure to find classical solutions should not be viewed too harshly.

Our hope is that by presenting our shortcomings the reader might be inclined to think

about this problem and help drive our knowledge toward the truth.
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Appendix A

A Direct Coercivity Calculation

We wish to show directly that for two functions u and v in W 1,4
0 (Ω),

∫

Ω

(

(ν1 + ν2|∇u|2)∇iju − (ν1 + ν2|∇v|2)∇ijv
)

∇ij(u − v) dx ≥ c||∇(u− v)||44.

This calculation inspired Corollary 4.1 and is very easy to follow. Thus this calculation

is included here for both completeness and interest.

Lemma A.1 Let u and v be in W 1,4
0 (Ω),

∫

Ω

(

(ν1 + ν2|∇u|2)∇iju− (ν1 + ν2|∇v|2)∇ijv
)

∇ij(u− v) dx ≥ ν2

4
||∇(u− v)||44.

Proof:

Let u(∇u) denote (ν1 +ν2|∇u|2), let w = u−v and let ∇u : ∇v denote ∇iju∇ijv. Then

∫

Ω

ν(∇u)∇u : ∇(w)−ν(∇v)∇v : ∇w dx = (A.1)

=

∫

Ω

(ν(∇u) − ν(∇v))∇u : ∇w + ν(∇v)∇w : ∇w dx

=

∫

Ω

ν2

(

|∇u|2 − |∇v|2
)

∇u : ∇w + ν(∇v)|∇w|2 dx

=

∫

Ω

ν2∇(u + v) : ∇w∇u : ∇w + ν(∇v)|∇w|2 dx

=

∫

Ω

ν2(∇u : ∇w)2 + ν2(∇u : ∇w)(∇v : ∇w) + u(∇v)|∇w|2.

(A.2)
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Now, noticing that expression
∫

Ω
ν(∇u)∇u : ∇(u − v) − ν(∇v)∇v : ∇(u − v) dx is

symmetric in u and v, since

∫

Ω

ν(∇u)∇u : ∇(u− v) − ν(∇v)∇v : ∇(u− v) dx =
∫

Ω

ν(∇u)|∇u|2 + ν(∇v)|∇v|2 − (ν(∇u) + ν(∇v))∇u : ∇v dx,

we conclude from (A.2) that

∫

Ω

ν(∇u)∇u : ∇(u− v) − ν(∇v)∇v : ∇(u− v) dx =
∫

Ω

ν2(∇v : ∇w)2 + ν2(∇u : ∇w)(∇v : ∇w) + u(∇u)|∇w|2. (A.3)

Averaging (A.2) and (A.3) we see then that

∫

Ω

ν(∇u)∇u : ∇w − ν(∇v)∇v : ∇w dx =

=
ν2

2

∫

Ω

(∇v : ∇w)2 + 2(∇v : ∇w)(∇u : ∇w) + (∇u : ∇w)2 dx+

+

∫

Ω

(

ν1 +
ν2

4

(

|∇v|2 + |∇u|2
)

)

|∇w|2 dx

=

∫

Ω

ν2 (∇(u + v) : ∇w)2 dx +

∫

Ω

(

ν1 +
ν2

4

(

|∇v|2 + |∇u|2
)

)

|∇w|2 dx

≥
∫

Ω

(ν1 +
ν2

4
|∇w|2)|∇w|2 dx

≥ ν2

4
||∇w||44. (A.4)

�

Since nothing in the previous proof relied on the fact that we used ∇u as opposed to

Du, we obtain a similar result in this case.

Lemma A.2 Let u and v be in J1,4
0 (Ω). Then,

∫

Ω

(

(ν1 + ν2|Du|2)Diju − (ν1 + ν2|Dv|2)Dijv
)

Dij(u− v) dx ≥ ν2

4
||D(u− v)||44.
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