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Abstract
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Mathematics

We construct two new classes of solutions of the Einstein constraint equations. First, we construct

a family of solutions on asymptotically Euclidean manifolds with boundary such that the boundary

is an apparent horizon. This initial data has application to the general relativistic N -body problem.

Second, we construct a family of low regularity asymptotically Euclidean solutions of the constraint

equations. These solutions have a metric in H s
loc with s > 3/2 and are required for existence

theorems for rough solutions of the Einstein evolution equations. In both cases, we adapt and extend

the constant mean curvature conformal method to apply it to these new settings.





TABLE OF CONTENTS

List of Figures iii

Chapter 1: Introduction 1

1.1 The Einstein Equations and the Einstein Constraint Equations . . . . . . . . . . . . 1

1.2 The Conformal Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Black Hole Initial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Rough Initial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 2: The Apparent Horizon Boundary Condition 14

2.1 Black Holes and Scri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Trapped Surfaces and Apparent Horizons . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Initial Data Containing Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Construction Via the Conformal Method . . . . . . . . . . . . . . . . . . . . . . . 23

Chapter 3: Weighted Sobolev Spaces 27

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Properties of Lp based weighted Sobolev spaces . . . . . . . . . . . . . . . . . . . 30

3.3 Properties of Hs based weighted Sobolev spaces . . . . . . . . . . . . . . . . . . 31

3.4 Asymptotically Euclidean Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . 41

Chapter 4: Linear Theory 44

4.1 Interior Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Estimates at Infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

i



4.3 Estimates on Manifolds with Boundary . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 5: Tools for the Conformal Method 60

5.1 The Vector Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 The Method of Sub- and Supersolutions . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Conformal Transformations of Asymptotically Euclidean Manifolds . . . . . . . . 73

Chapter 6: Applications 81

6.1 Apparent Horizon Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1.1 Suitable Conformal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1.2 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Rough Initial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.1 Approximation by Smooth Solutions . . . . . . . . . . . . . . . . . . . . 87

Bibliography 90

ii



LIST OF FIGURES

2.1 The Conformal Completion of M
4 as a subset of S3 × R . . . . . . . . . . . . . . 15

2.2 Time Symmetric Slice of Schwarzschild . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Boundary Mean Curvatures of an Asymptotically Euclidean Manifold . . . . . . . 25

iii



ACKNOWLEDGMENTS

I would like to thank everyone who contributed to my mathematical training. In particular, I am

grateful to Daniel Pollack and Jim Isenberg for their ideas and encouragement during my stay at the

University of Washington. My heartfelt thanks also goes to my family and friends for their moral

support while I pursued this degree.

iv



DEDICATION

For my parents.

v





1

Chapter 1

INTRODUCTION

Einstein’s general theory of relativity [Ei15] is a geometric model of space and time. It describes

the universe as a Lorentzian 4-manifold (M,g) on which gravity, encoded by the metric, and matter

interact via a system of PDEs known as the Einstein equations. Hidden in the geometric formulation

lies an initial value problem reflecting the theory’s origins in classical dynamics. One significant

difference between the initial value problem of general relativity and its classical counterpart is the

complexity of constructing suitable initial data. Data for the initial value problem cannot be freely

specified, but must itself satisfy a system of PDEs known as the Einstein constraint equations. So

for every application of the initial value problem, there is the associated problem of finding initial

data suitable for that application.

Our goal is to construct solutions of constraint equations for two applications of current interest.

The first has a geometric character and concerns the construction of initial data suitable for modeling

an isolated system of black holes. The second is more analytic in nature and is related to well-

posedness questions for the Einstein equations. Before describing these problems more explicitly,

we start by reviewing some aspects of the initial value problem.

1.1 The Einstein Equations and the Einstein Constraint Equations

A Lorentzian manifold is a smooth topological manifold Mn equipped with a metric g having

signature (−,+, · · · ,+). Like other field equations in physics, the Einstein equations arise from a

variational principle. We require the action

∫

M
Rg + L dVg (1.1)
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be stable under compact perturbations of the metric. In (1.1), Rg is the scalar curvature of g and L

is the Lagrangian associated with non-gravitational fields. When L = 0, the integral (1.1) is known

as the Einstein-Hilbert action. Computing the variation of (1.1) with respect to g we obtain the field

equations

Ricg −
1

2
Rg g = T. (1.2)

The tensor T is the variation of
∫
M L dVg with respect to g and is known as the stress-energy tensor.

A vacuum spacetime is a Lorentzian manifold (M4,g) that satisfies (1.2) with T = 0. In this case,

we can take the trace of (1.2) to find Rg = 0 and obtain the vacuum Einstein equations

Ricg = 0. (1.3)

The metric g naturally partitions each tangent space into three regions. We say a vector X is

timelike, spacelike or null if g(X,X) is negative, positive or zero respectively, and we say a vector

is causal if it is either timelike or null. A curve is timelike, spacelike, or null if it has a timelike,

spacelike, or null tangent vector at each point. A hypersurface M of M is timelike, spacelike, or null

if its tangent space at each point has a normal vector that is spacelike, timelike, or null respectively.

There is a special class of spacelike hypersurfaces that arise in the initial value problem. A Cauchy

surface of M is a spacelike hypersurface having the property that every inextendible timelike curve

in M intersects M once and only once. Not every Lorentzian manifold admits a Cauchy surface;

those that do are called globally hyperbolic. Every globally hyperbolic Lorentzian manifold admits

a continuous, globally defined, timelike vector field F . The choice of such a vector field is called a

time orientation, and any other timelike vector X is said to be future or past pointing if g(F,X) is

negative or positive respectively. We will tacitly assume that all Lorentzian manifolds are globally

hyperbolic and have been given a time orientation.

Suppose (M, g) is a globally hyperbolic vacuum spacetime with Cauchy surface M . Let g be the

Riemannian metric on M induced by g, let n be the future pointing timelike unit normal to M , and

let K denote the extrinsic curvature of M computed with respect to n, i.e. K(X,Y ) = −
〈
∇g

Xn, Y
〉

where ∇g is the connection on M. The Gauss-Codazzi equations permit the computation of n
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(Ricg −
R
2 g) in terms of g and K . Since Ricg = 0 we obtain

R − |K|2 + trK2 = 0 (1.4)

div K − d trK = 0. (1.5)

where all quantities of (1.4) and (1.5) involving a metric are computed with respect to g. Equations

(1.4) and (1.5) are known as the Hamiltonian and momentum constraint equations respectively.

Together they form the Einstein constraint equations.

The vacuum initial value problem of general relativity is the following. Given initial data

(M, g,K), find a Lorentzian manifold (M,g) satisfying the vacuum Einstein equations and an

embedding ι : M 7→ M such that ι(M) is a Cauchy surface for M and such that g induces g

and K on ι(M). A spacetime M satisfying these properties is called a Cauchy development of

(M, g,K) and is by definition a globally hyperbolic Lorentzian manifold. If it is also true that every

Cauchy development of (M, g,K) can be isometrically embedded in M, we say M is called the

maximal development of (M, g,K) (one can show a maximal development is unique up to isomor-

phism). As we have seen, (M, g,K) must satisfy the constraint equations in order to have a Cauchy

development. The following theorem shows that this condition is also sufficient.

Theorem 1.1 [CBG69] Given smooth initial data (M, g,K) satisfying the constraint equations

(1.4) and (1.5), there exists a smooth, maximal, globally hyperbolic Cauchy development of the

initial data.

As a consequence, there is a strong connection between globally hyperbolic solutions of the

Einstein equations and solutions of the Einstein constraint equations. However, two distinct solu-

tions of the constraint equations can generate isometric maximal developments. One cause of this

phenomenon arises from gauge freedom associated with the diffeomorphism group. If (M, g,K)

is a solution of the Einstein constraint equations, and if Φ : M → M is a diffeomorphism, then

(M,Φ∗g,Φ∗K) is also a solution of the constraint equations. More significantly, a globally hyper-

bolic manifold can be foliated with Cauchy surfaces, and each such surface determines a solution

of the constraint equations. So it is not the case that solutions of the constraint equations and maxi-

mal developments of the Einstein equations are in one-to-one correspondence. Never-the-less, it is
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important to understand the set of solutions of the constraint equations as a first step to constructing

maximal developments.

The Hamiltonian constraint (1.4) is a scalar equation and the momentum constraint (1.5) is a

vector equation; together they constitute 4 restrictions on 12 unknowns. So the constraint equations

constitute an underdetermined system, and the resulting degrees of freedom reflect the ability to

choose different initial conditions. The central questions about the constraint equations fall broadly

into two categories.

1. Can we parameterize the full set of solutions on a manifold M , or at least an interesting

subset?

2. Given a property P of initial data, can we construct solutions of the constraints with property

P?

The full answer to the first question is currently out of reach. But there is a general technique, known

as the conformal method, for constructing a large class of solutions. Our strategy is to extend and

adapt the conformal method to address two problems of the second type, one concerning black hole

initial data and one concerning low-regularity solutions.

1.2 The Conformal Method

The conformal method of Lichnerowicz [Li44] and Choquet-Bruhat and York [CBY80] starts by

decomposing initial data (M 3, g̃, K̃) into degrees of freedom that can be freely specified and degrees

of freedom that are to be found by solving a determined system of PDEs. The free parameters are

a representative Riemannian metric g of a conformal class [g], a trace-free symmetric (0, 2)-tensor

S, and a function τ . We will call the set (M, g, S, τ) the conformal data. The variables to be

determined are a conformal factor φ and vector field W . We reconstruct the metric and second

fundamental form via

g̃ = φ4g

K̃ = φ−2 (S + LW ) +
τ

3
g̃

where L is the conformal Killing operator. We recall that on a 3-manifold,

LW = LW g −
2

3
div Wg
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where L is the Lie derivative. Now LW is a trace-free symmetric (0, 2)-tensor, and therefore so is

S + LW . An easy computation shows that if S is any trace-free symmetric (0, 2)-tensor, then

divg̃ φ−2S = φ−6divg S.

Using this relationship and the familiar rule for the change of scalar curvature under conformal

transformations

Rg̃ = φ−5 (−8∆ gφ + Rgφ)

we can write the vacuum constraint equations for (M, g̃, K̃) in terms of φ, W , and the conformal

data (M, g, S, τ). We find

−8∆ gφ + Rgφ = |S + LW |2g φ−7 −
2

3
τ2φ5

∆ �
g W =

2

3
dτ φ6 − divg S

(1.6)

where ∆ �
g is the vector Laplacian divg Lg. From now on we will assume, unless stated otherwise,

that quantities involving a metric are computed with respect to g.

The question of solving the constraint equations becomes one of finding conformal data for

which system (1.6) admits a solution. Little is known about this question without making additional

assumptions. The most satisfactory results come from the hypothesis τ is constant. Since tr g̃ K̃ = τ ,

the resulting solutions are known as constant mean curvature (CMC) solutions. Under the CMC

hypothesis, the system (1.6) decouples and we find

−8∆φ + Rφ = |S + LW |2 φ−7 −
2

3
τ2φ5

∆ � W = −div S.

(1.7)

Although we will not work with compact manifolds, it is insightful to start by considering system

(1.7) on a compact manifold.

The equation for W

∆ � W = −div S (1.8)

is linear and has a straightforward analysis. An easy computation of the symbol of ∆ � shows this

operator is elliptic. Since the formal adjoint of L is −div, we have ∆ � = −L
∗
L is self adjoint and

hence is Fredholm with index 0. In particular, we can solve (1.8) if and only if
∫

M
〈X,div S〉 dV = 0
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for every X ∈ ker ∆ � . We note that if X ∈ ker∆ � , then integrating by parts we have

0 =

∫

M
〈∆ � X,X〉 dV = −

∫

M
〈LX, LX〉 dV

and hence X is a conformal Killing field. But then another integration by parts argument shows

∫

M
〈X,div S〉 dV = −

∫

M
〈LX,S〉 dV = 0.

So there is always a solution W of (1.8), and it is unique up to the addition of a conformal Killing

field X . Setting σ = S + LW we see that σ is a symmetric, trace-free, and divergence free (0, 2)-

tensor. We will call such tensors transverse-traceless and we note that σ is independent of the

solution W of (1.8). So specifying conformal data (M, g, S, τ) is equivalent to specifying confor-

mal data (M, g, σ, τ) where σ is a transverse-traceless tensor. In terms of this latter form of the

conformal data, the first equation of (1.7) becomes

−8∆φ + Rφ = |σ|2 φ−7 −
2

3
τ2φ5, (1.9)

which is known as the Lichnerowicz equation.

The analysis of the Lichnerowicz equation has an interesting connection with the Yamabe prob-

lem of finding a metric in a conformal class having constant scalar curvature. For example, when

σ ≡ 0, solving (1.9) is equivalent to finding a metric conformally related to g with constant scalar

curvature − 2
3τ2. We recall the Yamabe invariant λg of a compact 3-manifold (M 3, g) is defined by

λg = inf
f∈C∞(M),f 6≡0

∫
M 8 |∇f |2 + Rf2 dV

||f ||2
L6

.

The solution to the Yamabe problem (see, e.g. the review article [LP87]) shows that (M, g) is

conformally related to a metric with constant scalar curvature R if and only if λg has the same sign

as R. Although the problem of solving the Lichnerowicz equation is not as deep as that of the

Yamabe problem, the Yamabe invariant plays a central role in understanding when (1.9) admits a

solution. We have from [Is95], building on previous work [CB72] [OY73], that (1.9) has a unique

positive solution φ in the following cases.
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σ ≡ 0, τ = 0 σ 6≡ 0, τ = 0 σ ≡ 0, τ 6= 0 σ 6≡ 0, τ 6= 0

λg > 0 No Yes No Yes

λg = 0 Yes No No Yes

λg < 0 No No Yes Yes

Hence the conformal method leads to a construction of all CMC solutions of the constraint equations

on a compact manifold.

Our constructions involve an important class of non-compact Riemannian manifolds where the

conformal method also yields a construction of all CMC solutions of the constraints. These are the

asymptotically Euclidean (AE) manifolds used for modeling isolated gravitational systems. Loosely

speaking, an AE manifold has a compact core and a number of ends on which the metric is asymp-

totic to the Euclidean metric at far distances. An AE solution (M, g̃, K̃) of the constraints has the

asymptotics on each end

g̃ = g + o(1)

K̃ = o(r−1),

where g is the Euclidean metric. We make these decay conditions precise in Chapter 3 using

weighted Sobolev spaces.

The approach of the conformal method in the AE setting follows that for compact manifolds.

Equation (1.8), used to construct transverse traceless tensors, is in some ways easier to analyse on

AE manifolds. It can be shown that there are no conformal Killing fields vanishing at infinity, so the

vector Laplacian is always an isomorphism on suitable function spaces. To study the Lichnerowicz

equation, we start with conformal data (M, g, σ, τ) and wish to find a conformally related solution

(M, g̃, K̃) of the constraint equations. From the CMC hypothesis and the decay of K̃ at infinity,

we have τ = trg̃ K̃ = 0; such solutions are called maximal and are the Lorentzian analogues of

minimal surfaces. The Hamiltonian constraint for a maximal solution (M, g̃, K̃) reads

Rg̃ =
∣∣∣K̃

∣∣∣
2

g̃
.

We conclude that if (1.9) has a solution for (M, g, σ), then (M, g) must be conformally equivalent

to an AE metric with non-negative scalar curvature. In fact, something stronger is true. It was shown
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by Cantor in [Ca79a] that (1.9) is solvable if and only if (M, g) is conformally related to a scalar

flat metric. Now if (M, g) is conformally related to a scalar flat metric (M, ĝ), we have

∫

M
8
∣∣∣∇ĝf

∣∣∣
2

ĝ
+ Rĝf

2 dVĝ =

∫

M
8
∣∣∣∇ĝf

∣∣∣
2

ĝ
dVĝ > 0 (1.10)

for all smooth, compactly supported functions f not identically 0. For fixed f , the sign of first

integral in (1.10) is a conformal invariant. So if (M, g) is conformally equivalent to a scalar flat

metric, then ∫

M
8 |∇f |2 + Rf2 dV > 0 for all f ∈ C∞

c (M), f 6≡ 0 (1.11)

as well. It was previously reported [CaB81] [CBIY00] that (1.11) is also a sufficient condition. This

is not quite true, and we have shown [Ma03] that the correct condition is

λg = inf
f∈C∞

c (M),f 6≡0

∫
M 8 |∇f |2 + Rf2 dV

||f ||2
L6

> 0. (1.12)

The proof that (1.9) is solvable if and only if λg > 0 uses the method of sub- and super-solutions

to solve the semilinear Lichnerowicz equation. The argument in the end is quite simple. If λg > 0,

we can make a conformal change to a scalar flat metric. Letting φ = 1 + v, the Lichnerowicz

equation becomes

−8∆ v = |σ|2 (1 + v)−7. (1.13)

Now v− = 0 is a subsolution of (1.13) (i.e −8∆ v− ≤ |σ|2 (1 + v−)−7). Moreover, letting v+ be

the solution of

−8∆ v+ = |σ|2

that decays at infinity, it follows from a maximum principle argument that v+ ≥ 0. Since

|σ|2 (1 + v+)−7 ≤ |σ|2

it follows that v+ is a non-negative supersolution of (1.13). Since v− ≤ v+, a barrier argument then

shows there exists a solution of (1.13).

In summary, the CMC-conformal method leads to a decoupling of the momentum and Hamilto-

nian constraint equations. The momentum constraint is linear and is addressed by understanding the

mapping properties of the vector Laplacian. The Hamiltonian constraint is semilinear and is solved

using a barrier argument. The first step is to make a conformal change to make the equation easier
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to analyze, and the second step is to find a sub/super-solution pair. This is the programme we follow

to construct initial data in our applications.

1.3 Black Hole Initial Data

The black hole region B of a spacetime (M,g) is the set from which light cannot escape to infinity.

This notion can be made precise if (M,g) possesses an additional structure known as conformal

infinity (see Chapter 2). Although this definition of a black hole is sufficient for proving theorems,

it suffers from the drawback that in general one cannot know if a point p ∈ B unless one also knows

the entire causal future of p. In particular, given a Cauchy surface M of M, there is no known way

of determining B ∩ M without generating its future development. This is a significant obstacle to

constructing initial data for black hole spacetimes.

Fortunately, there exist structures called apparent horizons and trapped surfaces that can be

detected in initial data and accurately predict the development of a black hole in the spacetime. If

Σ is an apparent horizon in M , then it is guaranteed that Σ ⊂ M ∩ B. Heuristically, one can create

initial data for N black holes by creating initial data with N apparent horizons {Σi}
N
i=1. There is no

assurance, however, that Σi and Σj will be contained in separate components of B ∩ M , so it is not

certain that a spacetime with N apparent horizons really does contain N black holes. We can only

presume this is is so if the horizons are well separated.

Traditional methods of generating initial data containing trapped surfaces and apparent horizons

do so indirectly by working with manifolds with nontrivial topology [Mi63], [BL63], [YB80]; these

methods guarantee the existence of an apparent horizon somewhere in the data but typically do not

dictate precisely where. A direct approach to the problem, first proposed for numerical study in

[Th87], is to work with a manifold with boundary and specify that the boundary be an apparent

horizon. Until recently, however, there had not been a rigorous construction of such initial data.

We present in this dissertation our constuction from [Ma03] of asymptotically Euclidean so-

lutions of the constraint equations on a manifold with boundary such that each component of the

boundary is an apparent horizon. Contemporaneous work by Dain in [Da03] treated a similar prob-

lem, solving the constraints with a trapped surface boundary condition. The two works used similar

methods, but the resulting boundary conditions are somewhat different. In fact, it remains an open
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problem to connect the two works in a larger framework; we discuss this and other open problems

in Section 6.1.2.

The apparent horizon boundary condition can be written as

− trK + K(ν, ν) − H = 0 on ∂M, (1.14)

where ν is the exterior unit normal to the boundary and H is the mean curvature of ∂M computed

with respect to the interior unit normal. Applying the CMC conformal method, equation (1.14)

becomes a boundary condition for Lichnerowicz equation. We obtain

−8∆φ + Rφ − |σ|2 φ−7 = 0

4∂νφ + Hφ − σ(ν, ν)φ−3 = 0 on ∂M
(1.15)

where σ is transverse-traceless tensor. Our main results for the apparent horizon boundary value

problem provide sufficient conditions on the conformal data (M, g, σ) under which system (1.15) is

solvable and show that there is a large class of conformal data that satisfy these conditions.

1.4 Rough Initial Data

By making a suitable choice of coordinates, known as harmonic or wave coordinates, the vacuum

Einstein equations for the Lorentzian metric g take the form

g
αβ∂α∂βgµν = Nµν(g, ∂g)

where Nµν is quadratic in the derivatives of g. This is a nonlinear hyperbolic system of PDEs, and

it is natural to determine function spaces in which the evolution problem is well posed. The first

local well-posedness results for the Einstein equations were established in [FB52] for initial data

(g,K) ∈ C5 × C4. Subsequent improvements lead to a well-posedness result [HKM77] for the

Einstein equations that requires initial data with (∂g,K) ∈ H s−1 × Hs−1 with s > 5/2 (by ∂g

here we mean the derivatives of g in suitable coordinates). We will call a solution with this last

level of regularity a classical solution. Recent work in the theory of nonlinear hyperbolic PDEs

has lowered the amount of regularity required. Smith and Tataru [ST] have obtained local well-

posedness for nonlinear wave equations with initial data in H s × Hs−1 with s > 2. In the case of

the vacuum Einstein equations, Klainerman and Rodnianski [KR] established an a-priori estimate
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for the time of existence of a classical solution in terms of the norm of (∂g,K) in (H s−1,Hs−1),

again with s > 2. These results should have lead to an existence theorem for rough solutions, but the

corresponding low regularity theory of the constraint equations was not sufficiently well developed.

It was not known if there existed any rough solutions of the constraint equations. Moreover, to

pass from the a-priori estimate in [KR] to an existence theorem for rough initial data requires the

existence of a sequence of classical solutions of the constraints approximating the rough solution;

this approximation theorem was also missing.

We present here our proof from [Ma04] that the conformal method can be extended to construct

suitable rough solutions of the constraints, and that these solutions can be approximated in an appro-

priate topology by classical solutions. Specifically, we generate asymptotically Euclidean solutions

in Hs
loc × Hs−1

loc with s > 3/2. To compare the lower bound s > 3/2 with previous results, we

must keep in mind that the constraint equations have typically been solved either in Hölder spaces

or in Sobolev spaces W k,p
loc × W k−1,p

loc , where k is an integer. The classical lower bound [CBIY00]

for the existence of solutions of the constraint equations was k > 3/p + 1. These metrics have

one continuous derivative and can be thought of as analogous to metrics in H s
loc with s > 5/2.

This lower bound was improved in the settings of compact manifolds [CB03] and asymptotically

Euclidean manifolds [Ma03] to k ≥ 2 and k > 3/p. The restriction k > 3/p ensures that the metric

is continuous, while the inequality k ≥ 2 further implies that the curvature belongs to Lp
loc. Taking

k = 2 and p = 2, these results provide for H2
loc × H1

loc solutions of the constraint equations. But

they do not construct solutions directly in the spaces of interest (H s
loc × Hs−1

loc with s > 2), nor do

they provide an approximation theorem.

Now s = 3/2 is the scaling limit for the Einstein equations, so this is a natural lower bound for

local well-posedness results. It has been suggested [KR03] that it might not be possible to obtain

local well-posedness down to s > 3/2. In the case of the constraint equations, however, we have

shown that working in spaces with s > 3/2 is feasible. In fact, the restriction s > 3/2 is analogous

to the condition k > 3/p from [CB03] [Ma03] as these thresholds ensure the metric is continuous.

A novel feature of the solutions considered here is that when 3/2 < s < 2, the curvature of g is in

general only a distribution, not necessarily an integrable function.
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1.5 Strategy

Rather than treat each application separately, our approach is to prove results for both settings in

parallel. The steps for the conformal method are similar in both applications and we wish to avoid

having two similar copies of each theorem. We begin in Chapter 2 by motivating the apparent

horizon condition and laying out the programme for adapting the conformal method to this problem.

Chapter 3 then starts the mathematical analysis with results for our choice of weighted function

spaces. These spaces were introduced some time ago by Triebel [Tr76a], but are not well-known

and are an important piece of our low regularity constructions. We then establish in Chapter 4 a

priori estimates for the Laplacian and vector Laplacian of a rough metric. Using these estimates, we

prove in Chapter 5 the propositions needed to apply the conformal method to the apparent horizon

boundary problem and to the low regularity problem. Finally, Chapter 6 contains the constructions

of solutions for both applications.

1.6 Notation

The set of tempered distributions on R
n is S∗. We use the Sobolev spaces W k,p(Rn) of functions

with k derivatives in Lp(Rn), Hs(Rn) defined via Fourier transforms, and their cousins W k,p(Ω)

and Hs(Ω) where Ω ⊂ R
n is an open set. The set of smooth, compactly supported functions in

Ω is C∞
c (Ω). We set W̊ k,p(Ω) to be the closure of the C∞

c (Ω) in W k,p(Ω), and H̊s(Ω) is defined

similarly.

Unless otherwise noted, we always take n to be an integer with n ≥ 3. The ball of radius r

about x in R
n is Br(x) or simply Br when x = 0; Er is the region exterior to Br; Ar is Br ∩ E r

2
.

If F : X → Y is a continuous linear map of Banach spaces, we set ||F ||X to be the operator norm

of F , leaving the target space to be inferred. We define f (+)(x) = max(f(x), 0). If s ∈ R, we set

[s] to be the largest integer k such that k ≤ s.

Let M be a Lorentzian manifold with metric g and connection ∇g. If M is a spacelike hy-

persurface of M with timelike unit normal N , we define the extrinsic curvature K of M in M by

K(X,Y ) =
〈
∇g

XY,N
〉
g

for vector fields tangent to M . This definition agrees with that used in

[YB80] and [Da02], but differs in sign from that used in [Wa84] and [Da03].

Let M be a Riemannian manifold with metric g and connection ∇g. If Σ is a spacelike hy-
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persurface of M with unit normal ν and induced metric g ′, the extrinsic curvature k of Σ in M is

similarly defined by k(X,Y ) =
〈
∇g

XY, ν
〉
g
. The mean curvature H of Σ computed with respect

to ν is trg′ k. This convention for the mean curvature agrees with that typically used in general

relativity, but differs by a multiplicative constant from the convention used in, e.g., [Le97]. We set

the Laplacian on (M, g) to be ∆ g = divg gradg, so ∆ g has negative eigenvalues.

We use the notation A . B to mean A < cB for a certain positive constant c. The constant

is independent of the functions and parameters appearing in A and B that are not assumed to have

a fixed value. For example, when considering a sequence {fi}
∞
i=1 of functions on a domain Ω, the

expression ||fi||L1(Ω) . 1 means the sequence is uniformly bounded in L1(Ω) (with a bound that

might depend on Ω).
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Chapter 2

THE APPARENT HORIZON BOUNDARY CONDITION

2.1 Black Holes and Scri

Heuristically, a black hole is a region of space that cannot send signals to infinity. One way to

make this notion precise is the machinery of conformal completions. A Lorentzian manifold with

boundary (M′,g′) is a conformal completion of (M,g) if there exists an embedding ι : M 7→ M′

such that

1. ι(M) = intM′.

2. There exists a differentiable function Ω smooth on intM′, such that g′ = Ω2ι∗g in intM′.

3. Ω vanishes on
�

= ∂M′ and dΩ is nowhere vanishing on
�

.

One typically also makes additional hypotheses concerning the smoothness of
�

and on the differ-

entiability of Ω at
�

, but the correct choice of these is still an area of research and is not important

to the subsequent exposition. Since Ω vanishes at the boundary, we think of the boundary
�

(called

scri) as the boundary at infinity. Note that if M′ is a conformal completion of M and if p ∈
�

,

then M′ − {p} is also a conformal completion of M. Hence any useful definition of conformal

completion should also include a completeness hypothesis, which we will return to below.

We first recall the standard conformal completion of Minkowski space M
4, i.e. R

4 equipped

with the metric diag(−1, 1, 1, 1). Consider the cylindrical manifold E = R × S 3 with the metric

g
′ = −dT 2 +dS2

3 , where dS2
3 is the round metric on S3 and T is the coordinate on the R factor. We

then embed M
4 into E as follows. Let t and r denote the usual time and spacial radius coordinates

of Minkowski space, and let R denote the distance in S3 from the north pole. We then set

T = arctan(t + r) + arctan(t − r)

R = arctan(t + r) − arctan(t − r)
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Figure 2.1: The Conformal Completion of M
4 as a subset of S3 × R

and identify surfaces of constant r in M
4 with surfaces of constant R in S3 in the natural way to

obtain an embedding of M
4 into the region of E given by

−π < T + R < π

−π < T − R < π

Letting ι denote this embedding, then

ι∗g′ = Ω2
g

where

Ω2 =
4

(1 + (t + r)2)(1 + (t − r)2)
.

We take M′ to be the image of M under this embedding together with the null surfaces
� + and

� − indicated in Figure 2.1 (the points i0, i+, and i− are not part of M′; the boundary is not regular

at i± and M′ ∪ i0 is not a manifold with boundary).

To extend these notions to more general manifolds, we need some concepts from causality the-

ory. We say a point x chronologically precedes y if there exists a piecewise future directed timelike
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curve from x to y, in which case we write x � y. Similarly, x causally precedes y if there exists a

piecewise future directed causal curve from x to y, and we write x ≺ y. Note that degenerate curves

are never timelike, but are always causal. Hence x ≺ x always holds, but it is not true in general

that x � x.

The chronological future of a point x is the set I+(x) = {y : x � y}, and the chronological

past of x is I−(x) = {y : y � x}. The causal future J+(x) and past J−(x) are defined similarly

replacing � with ≺. These definitions extend in the obvious way to sets. For example, I +(S) =

∪x∈SI+(x). It follows trivially from the definitions that I+(S) ⊂ J+(S). Moreover by working in

geodesic normal coordinates, it is easy to see that I+(S) is always open. It is not true in general that

J+(S) is closed, even when S is compact. For example, if x ∈ ∂(J−(0)) in M
n, then J+(x) is not

closed in M
n − 0. So I

+
(S) ⊃ J+(S) ⊃ I+(S) with each containment strict in general. But in the

case of a globally hyperbolic spacetime J+(K) = I
+
(K) for all compact sets K , and in particular

J+(K) is closed.

For a general conformal completion, we define
� + = {x ∈

�
: I−x ∩ M 6= ∅}, with an

analogous definition for
� −. Intuitively

� + is the portion of the boundary that can be reached

by future oriented timelike curves starting in M. These definitions agree with the sets indicated in

Figure 2.1 for the conformal completion of M
4.

Given a Lorentzian manifold M possessing a conformal completion M′, we define the black

hole region of M to be B = M−J−(
� +), so that the black hole region is the part of M that cannot

be seen from
� +. Obviously, the black hole region depends on the choice of conformal completion.

To compensate for this, we say M is asymptotically Minkowskian at future null infinity if it has a

conformal completion M′ and moreover

4. HessΩ = 0 on
� +, where the Hessian is computed with respect the conformal metric on

M′.

5.
� + is foliated by complete null geodesics.

6.
� + is homeomorphic to S2 × R, with the homeomorphism taking each null generator to a

copy of R.
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These technical conditions, due to [GH78], ensure that
� + “looks like” the

� + for Minkowski

space and is in this sense maximal. If the previous hypotheses also apply to
� −, we say that M is

asymptotically Minkowskian.

Asymptotically Euclidean initial data (M, g,K) can be defined in a similar way using conformal

completions modeled on the conformal completion of Euclidean space into the sphere. We choose,

however, to use an equivalent definition of asymptotically Euclidean data in terms of preferred charts

near infinity and decay properties of g and K in these charts. Chapter 3 contains a precise definition

of asymptotically Euclidean initial data.

Given a spacelike hypersurface M of M, we count the number of black holes in M by counting

the number of components of B ∩ M . Hence the number of black holes in a spacelike hypersurface

(if any) is not a local property of the hypersurface, but a global property of the spacetime. This

presents a significant challenge for constructing Cauchy data containing black holes. It would be

nice to have a way to detect Cauchy data that will form a black hole (without first evolving the data),

and this leads us to a discussion of trapped surfaces.

2.2 Trapped Surfaces and Apparent Horizons

Suppose Σ is a compact two-dimensional spacelike submanifold of a four-dimensional Lorentzian

manifold M. Then at each point p ∈ Σ there exist a pair of future pointing null vectors N+ and

N− normal to Σ such that TpM = TpΣ ⊕ spanN+ ⊕ spanN−. Since g(N±, N±) = 0, we cannot

use unit length normalization to select a distinguished choice of future pointing vector in spanN±.

The choice of vectors N+ and N− is unique, however, up to scaling and transposition. If the normal

bundle of Σ is orientable, then N+ and N− can be extended to a pair of smooth future pointing null

normal vector fields on Σ. Since M is time-orientable, the normal bundle of Σ is orientable if and

only if there exists a globally defined spacelike unit normal vector ν to Σ. In particular, if Σ is the

boundary of a spacelike hypersurface M , then the normal bundle of Σ is orientable. For simplicity

we will assume that both the normal and tangent bundles of Σ are orientable.

We can construct a null hypersurface N+ containing Σ and ruled by null geodesics such that N+

is tangent to these geodesics. The vector field N+ on Σ extends naturally to a vector field, also called

N+, tangent to N+ and satisfying ∇N+N+ = 0 (here ∇ is the connection on the ambient Lorentzian
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manifold and N+ is suitably extended off of N ; such extensions will be made as needed without

comment henceforth). On Σ we have the null second fundamental form χ+ given by χ+(X,Y ) =

−〈∇XN+, Y 〉. Formally this expression resembles the second fundamental form of Riemannian

geometry. However, since 〈N+, N+〉 = 0, χ+(X,Y ) detects, in some sense, the part of ∇XY in

spanN−. The quantity θ+ = − trχ+ is known as the convergence or expansion of Σ with respect

to N+ and plays a similar role to mean curvature in Riemannian geometry. Using the flow of N+ to

define a family of spacelike surfaces Σt with Σ0 = Σ we see that θ+ is well defined on N , not just

on Σ.

Now N possesses a unique globally defined two-form dA satisfying dA(E1, E2) = 1 for any

pair of oriented orthonormal spacelike basis vectors to N . An easy computation shows LN+dA =

θ+dA. So θ+ describes the change in area of Σ as it evolves under the flow of N+. Since N+ is

defined only up to scale, it is interesting to note how θ+ depends on N+. The scale of N+ defines a

choice of affine parameter for the null geodesics that rule N . If instead of N+ we work with λN+,

where λ is a positive function on Σ, we obtain

χN+(X,Y ) = 〈∇XλN+, Y 〉

= Xλ 〈N+, Y 〉 + λ 〈∇XN+, Y 〉

= λ χN+(X,Y ).

In particular, θλN+ = λθN+ and hence the sign of θ+ is geometrically significant. We say a surface

Σ is trapped if both θ± < 0 and marginally trapped if both θ± ≤ 0 on all of Σ. A trapped surface is

(instantaneously) shrinking as it evolves under the flow of any family of orthogonal future pointing

null geodesics.

To see how θ+ evolves under the flow of N+, we compute ∇N+ trχ+ = tr∇N+χ+. Doing so,

we arrive at

∇N+θ+ = − |χ+|
2 − Ric(N+, N+)

= −
1

2
θ2 − |σ+|

2 − Ric(N+, N+) (2.1)

where σ+ is the trace free part of χ+ and Ric is the Ricci tensor of the ambient Lorentzian metric.

Equation (2.1) is known as the Raychaudhuri equation. If Ric(N,N) ≥ 0 for all null vectors N

(this is known as the null energy condition) then we can compare (2.1) with the ODE x ′ = −x2. It
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follows from Gronwall’s inequality that if θ+ = θ0 < 0 at affine parameter t = 0, then θ+ tends to

−∞ somewhere within t ∈ (0,−2/θ0].

Points where θ+ = −∞ are important because of a connection with conjugate points. The fam-

ily of null geodesics generating N+ is associated with a set of Jacobi fields arising from deviations

through this family. A point p on an orthogonal null geodesic γ starting at Σ is said to be conjugate

to Σ if there exists a nontrivial Jacobi field X arising from such a deviation that vanishes at p. It

turns out that a necessary and sufficient condition for p to be conjugate to Σ is θ+(p) = −∞. This

implies that every null geodesic orthogonal to a trapped surface Σ has a conjugate point within a

finite affine parameter from Σ (so long as the geodesic can be extended that far), and since Σ is

compact we have a uniform bound on this parameter. One can also show that if p is conjugate to

Σ, then the geodesic γ connecting p and Σ is homotopic to a timelike curve connecting p to Σ and

hence p ∈ I+(Σ).

Trapped surfaces play an important role in the theory of gravitational collapse and the appear-

ance of singularities. The following theorem of Penrose is typical. We sketch to proof to see the

relationship between trapped surfaces, the appearance of conjugate points, and the appearance of

singularities.

Theorem 2.1 [Pe65] Let M be a spacetime satisfying the null energy condition. If M has a non-

compact Cauchy surface M containing a trapped surface Σ, then there exists an inextendible null

geodesic starting at Σ that terminates within finite affine parameter.

Idea of Proof: Since M is globally hyperbolic, J+(Σ) = I+(Σ) and ∂I+(Σ) is ruled by null

geodesics orthogonal to and terminating at Σ. Since Σ is trapped, each such geodesic has a conjugate

point p within finite affine parameter hence p ∈ I+(Σ) and therefore p 6∈ ∂I+(Σ). It follows that

∂I+(Σ) is homeomorphic to a closed, bounded subset of Σ × R and is hence compact. On the

other hand, since M is a Cauchy surface we can establish a homeomorphism between ∂I+(Σ) and

a subset S of M . Since ∂I+(Σ) is compact, so is S and in particular S is closed. Since ∂I+(Σ) is

a manifold, S is locally Euclidean and hence open. Since M is connected, S = M , and since M is

not compact we have a contradiction. ut

In particular, Theorem 2.1 shows that if an asymptotically Euclidean initial data set contains

a trapped surface, then the resulting maximal globally hyperbolic Cauchy development is not null
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complete. The theorem does not indicate the cause of the null incompleteness. One possibility

that a singularity forms. Another is that the maximal development (M,g) can be embedded in

a larger (not globally hyperbolic) spacetime (M′,g′) In this second case, the boundary of M in

M′ is called a Cauchy horizon. There exists a stronger singularity theorem due to Hawking and

Penrose [HP70] that does away with the Cauchy horizon possibility at the expense of adding more

hypotheses. Regardless, a trapped surface is associated with pathological behaviour of the resulting

Cauchy development. Now, a marginally trapped surface cannot be used in the previous proof since

we have no guarantee that a marginally trapped surface generates null geodesics having conjugate

points. On the other hand, we see from (2.1) that the condition θ± = 0 is not stable. For example,

if χ± 6= 0 everywhere on Σ, then again we can conclude the existence of conjugate points. Hence

marginally trapped surfaces are also of interest.

Another kind of surface, related to trapped surfaces, is an apparent horizon. Suppose Σ is

contained in an asymptotically Euclidean Cauchy surface M and is the boundary of a region M∞ of

M containing spacelike infinity. We can then distinguish N+ and N− by the condition 〈N+, ν〉 < 0,

where ν is the outward pointing normal vector of M∞. We say that such a Σ is outer marginally

trapped if θ+ ≤ 0 and is an apparent horizon if θ+ vanishes identically. Apparent horizons are

particularly interesting, since the boundary of a maximal foliation by trapped surfaces can be shown

to be an apparent horizon, assuming the boundary is sufficiently smooth. In this sense, apparent

horizons play a role for trapped surfaces that the event horizon does for the true boundary of a black

hole.

One can show that trapped, marginally trapped and outer marginally trapped surfaces all signal

the development of a black hole. This is important, since the expansion of a surface Σ in M can be

computed directly using the initial data (M, g,K). Of course, the claim that a black hole appears is

contingent on the resulting Cauchy evolution having an appropriate scri. That this is true generically

is known as the weak cosmic censorship which can be roughly formulated in the vacuum setting as

follows.

Weak Cosmic Censorship Conjecture Let (g,K,M) be asymptotically Euclidean vacuum

initial data satisfying appropriate smoothness and decay hypotheses. Then generically the maximal

Cauchy evolution (M,g) of this data is asymptotically Minkowskian at future null infinity and

M∪
� + is globally hyperbolic.
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The heuristic idea behind the conjecture is straightforward. If a complete
� + forms, observers

sufficiently near infinity will never be affected by a pathology that develops in the spacetime. More-

over, since
� + is contained in the domain of dependence of M , no pathologies are visible at infinity.

So if any exist, they must be contained in a black hole. The generic caveat is present in the con-

jecture since it is know that certain spherically symmetric initial data for gravity coupled with a

Klein-Gordon matter field do form naked singularities [Ch94], but that these singularities do not

persist under perturbations. In the vacuum setting, no known counterexamples to weak cosmic

censorship exist. We have the following theorem relating trapped surfaces and black holes

Theorem 2.2 [HE73][Wa84] Let (g,K,M) be initial data containing a trapped, marginally trapped,

or marginally outer trapped surface Σ. If the maximal Cauchy development (M,g) of the data is

weakly censored, then I−(
� +) ∩ Σ = ∅ and hence Σ is contained in the black hole region of

(M,g).

Although this result is widely accepted in the relativity community, the proofs in the cited texts

are not correct (except for [Wa84] in the context of trapped surfaces and with mildly stronger hy-

potheses than those stated here). One can, in fact, give a correct proof for trapped surfaces. The

case of marginally (outer) trapped surfaces is more delicate but also can be addressed [CG03].

2.3 Initial Data Containing Black Holes

Theorem 2.2 motivates finding finding solutions (M, g,K) of the constraint equations (1.4) and

(1.5) containing trapped surfaces or apparent horizons. Let (M, g,K) be an asymptotically Eu-

clidean data set, and let Σ be an orientable compact hypersurface with unit normal ν. If M is a

Cauchy surface for a spacetime M with future pointing timelike unit normal n, then the vectors

N± = ±ν + n are null, future pointing, and orthogonal to Σ. The convergences θ± computed with

respect to N± are

θ± = − trK + K(ν, ν) ∓ H,

where H is the mean curvature of Σ in M computed with respect to ν. For time symmetric initial

data (that is, data with K = 0), then the equation θ+ = 0 reduces to H = 0. The Hamiltonian

constraint (1.4) reduces to R = 0 and the momentum constraint (1.5) is satisfied automatically. So a
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Figure 2.2: Time Symmetric Slice of Schwarzschild

time symmetric solutions of the constraints with an apparent horizon is just a scalar flat Riemannian

manifold with a minimal surface. Consider the manifold R × S2 with the metric (1 + s2)ds2 +(
s2+1

2

)2
dS2, where s is the coordinate along R and dS2 is the round metric on the sphere. One

readily shows this manifold is scalar flat and that the level set s = 0 is a minimal surface. The

maximal development of this data is a member the one parameter family of Schwarzschild solutions

of the Einstein equations, and is a prototypical black hole solution.

Note from Figure 2.2 that the Schwarzschild initial data has two asymptotically Euclidean ends

connected by a neck. For the purposes of computing the black hole region B of the resulting Cauchy

development, we select a distinguished end and work with the scri of that end.

One can imagine similar data formed by connecting two asymptotically Euclidean regions to-

gether with several necks, or connecting several asymptotically Euclidean regions to a given distin-

guished one. Schemes such as those in in [Mi63], [BL63], [YB80] (see also [Ck00]) create families

of initial data containing apparent horizons or trapped surfaces inside necks. A very flexible ap-

proach for generating necks comes from a gluing construction [IMP02]. One can, for example, start

with two asymptotically Euclidean solutions of the constraints (Mi, gi,Ki), i = 1, 2, and generate

a third solution (M1#M2, g,K) on the connected sum. The new solution will contain a neck and

will closely approximate the original solutions away from the surgery location. In certain cases, one
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can prove rigorously that necks introduced this way will evolve into distinct black holes [CM03].

The previous methods for generating black hole initial data create apparent horizons indirectly

by topological means. A direct approach for creating apparent horizons, introduced by Thornberg

[Th87], is to work with a manifold with boundary and prescribing that the boundary be an apparent

horizon. Thornburg numerically investigated generating such initial data, and variations of the ap-

parent horizon condition have subsequently been proposed for numerical study, e.g. [Ck02] [Ea98].

However, as indicated by Dain [Da02], there has not been a rigorous mathematical investigation of

the apparent horizon boundary condition.

Let (M, g,K) be an asymptotically Euclidean data set on a manifold with compact boundary,

and let ν denote the exterior unit normal to ∂M . The convergences θ± computed at the boundary

are

θ± = − trK + K(ν, ν) ∓ H,

where H is the mean curvature of ∂M in M computed with respect to −ν. The convergence θ+

corresponds to the outgoing (to infinity) null direction and hence the boundary is an apparent horizon

if θ+ = 0. So our goal is to find initial data satisfying

R − |K|2 + trK2 = 0

div K − d trK = 0

− trK + K(ν, ν) − H = 0 on ∂M.

(2.2)

2.4 Construction Via the Conformal Method

Following the strategy for manifolds without boundary, we start with an asymptotically Euclidean

manifold (M 3, g) with boundary and a transverse traceless tensor σ. We then seek to find a con-

formal factor φ such that g̃ = φ4g and K̃ = φ−2σ solves the constraint equations, and we want

∂M to satisfy θ̃+ = 0. The convergences θ̃± can be written in terms of the conformal data, and in

particular the condition θ̃+ = 0 becomes

4φ−3∂νφ + Hφ−2 − φ−6σ(ν, ν) = 0



24

where ν is the exterior unit normal to ∂M and H is computed with respect to −ν. So we want to

find conditions on (M, g, σ) under which the boundary value problem

−8∆φ + Rφ − |σ|2 φ−7 = 0

4∂νφ + Hφ − φ−3σ(ν, ν) = 0 on ∂M
(2.3)

is solvable. Given the analysis of the Lichnerowicz equation in the case ∂M = ∅, it seems reason-

able that there will be a restriction on the conformal class [g]. We express this restriction in terms

of a conformal invariant for asymptotically Euclidean manifolds with boundary that generalizes one

introduced by Escobar [Es92] for compact manifolds. On 3-manifolds, the invariant is

λg = inf
f∈C∞

c (M),f 6≡0

∫
M 8 |∇f |2 + Rf2 dV +

∫
∂M 2Hf2 dA

||f ||2
L6

.

In Chapter 6 we prove that there exists a solution of (2.3) provided

1. (M, g) satisfies λg > 0, R = 0 and H < 0,

2. σ satisfies H ≤ σ(ν, ν) ≤ 0,

and that there exists a large class of conformal data (M, g, σ) satisfying conditions 1–2. For man-

ifolds without boundary, λg > 0 is a necessary condition. Although it is not clear if this condition

is also necessary to solve the boundary value problem (2.3), our construction requires it because it

ensures

P = (−8∆ + R, 4∂ν + H |∂M )

is an isomorphism acting on certain weighted Sobolev spaces. We also show that if λg > 0, then

we can always conformally change to an asymptotically Euclidean manifold satisfying R = 0 and

H < 0. So in some sense the requirements R = 0 and H < 0 are superfluous. We make these

requirements explicit, however, since condition 2 is not conformally invariant; the inequality in

condition 2 must hold with respect to a conformal representative having R = 0 and H < 0.

To motivate condition 2, we first consider the sign condition σ(ν, ν) ≤ 0. Since K̃(ν̃, ν̃) =

φ−6σ(ν, ν), it follows that the sign of σ(ν, ν) determines the sign of K̃(ν̃, ν̃). Now if θ̃+ = 0, it

follows that

K̃(ν̃, ν̃) = H̃.
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H̃ < 0

H̃ = 0

H̃ > 0

Figure 2.3: Boundary Mean Curvatures of an Asymptotically Euclidean Manifold

Thus the sign of σ(ν, ν) also determines the sign of H̃ . Finally, the sign of H̃ determines a relation-

ship between θ̃+ and θ̃−. Since

θ̃+ = K̃(ν̃, ν̃) − H̃

θ̃− = K̃(ν̃, ν̃) + H̃,

we conclude that H̃ ≤ 0 implies θ̃+ ≥ θ̃− whereas H̃ ≥ 0 implies θ̃+ ≤ θ̃−. Hence we require

σ(ν, ν) ≤ 0 to ensure θ̃− ≤ θ̃+ = 0 and therefore the boundary of M is not only an apparent

horizon, but also a marginally trapped surface. In fact, an earlier version of [Ma03] worked with

the condition σ(ν, ν) ≥ 0. Although this allowed for the construction of apparent horizons, it

was observed in [Da03] that these surfaces are of limited physical interest because they are not

marginally trapped surfaces. For comparison, we consider the approach of [Da03]. Rather than

work with θ̃+, Dain prescribes θ̃− ≤ 0 and under suitable conditions constructs solutions satisfying

θ̃+ ≤ θ̃− ≤ 0. These are trapped surfaces, but the relationship θ̃+ ≤ θ̃− shows that for these

solutions H̃ ≥ 0. Hence the method of [Da03] cannot construct an apparent horizon (except in the

extremal case θ̃+ = θ̃− = H̃ = 0). To create an apparent horizon that is also a marginally trapped

surface, we must have H̃ ≤ 0. Figure 2.3 shows boundaries with mean curvatures of different signs

and indicates the difference between the conditions H̃ ≥ 0 and H̃ ≤ 0.

We now analyze to the condition H ≤ σ(ν, ν). Since σ(ν, ν) ≤ 0, we have the necessary

consequence H ≤ 0. From an analysis point of view, we would rather have H ≥ 0. For example,

if R ≥ 0 and H ≥ 0, then there is a maximum principle associated with P . This would be a useful

tool to show conformal factors we construct are positive. This last fact is part of the motivation
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for the condition σ(ν, ν) ≥ 0 in the prior version of [Ma03] and also for the choice in [Da03] to

work with θ̃− rather than θ̃+. The inequality H ≤ σ(ν, ν) is used to compensate for the loss of

the maximum principle. To understand the meaning of this condition, we note that σ(ν, ν) − H is

equivalent to θ+ > 0 for the conformal data. Hence we can start with conformal data with θ+ > 0

and θ− < θ+ and transform to initial data with θ̃+ = 0 and θ̃− < θ̃+.
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Chapter 3

WEIGHTED SOBOLEV SPACES

3.1 Motivation

On a bounded open set Ω, the Laplacian is an isomorphism from W̊ 2,2(Ω) to L2(Ω). By contrast,

the Laplacian does not have good mapping properties from W̊ 2,2(Rn) = W 2,2(Rn) to L2(Rn). It

is not a Fredholm operator and in particular it does not have closed range. To see this, we first note

that the Laplacian has trivial kernel in W 2,2(Rn). For if ∆u = 0, then

0 =

∫
�

n

−u∆u dV =

∫
�

n

|∇u|2 dV

and hence u = 0. If the Laplacian had closed range X ⊂ L2(Rn), then X would be a Banach space

with the L2 norm. We would then have an isomorphism ∆ : W 2,2(Rn) → X and the resulting

inequality

||u||W 2,2(
�

n) . ||∆u||L2(
�

n)

for all u ∈ W 2,2(Rn). A scaling argument shows that this inequality cannot hold. For r > 0

let Sr be the rescaling operator (Sru)(x) = u(rx). The rescaling operator takes a function sup-

ported on Br to a function supported on B1. For u ∈ W 2,2(Rn) we have ∆Sru = r2Sr∆u and

||Sru||L2(
�

n) = r−
n
2 ||u||L2(

�
n). So

||u||L2(
�

n) = r−
n
2 ||S 1

r
u||L2(

�
n) ≤ r−

n
2 ||S 1

r
u||W 2,2(

�
n)

. r−
n
2 ||∆S 1

r
u||L2(

�
n) = r−2||∆u||L2(

�
n).

This is obviously false for large r. We require function spaces with better scaling properties to study

the Laplacian on R
n.

In [Mc79], building on earlier work by Nirenberg and Walker in [NW73], McOwen showed

that the Laplacian on R
n does have good mapping properties on weighted Sobolev spaces. Letting
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〈x〉 = (1 + |x|2)1/2 we define for k ∈ Z≥0, 1 ≤ p < ∞, and δ ∈ R

W k,p
δ (Rn) =



u ∈ S∗ : ||u||

W k,p
δ (

�
n)

=
∑

|β|≤k

|| 〈x〉−δ−n
p
+|β|

∂βu||Lp(
�

n) < ∞





Lp
δ(R

n) = W 0,p
δ (Rn).

Heuristically, a function in W k,p
δ has growth at infinity no faster than O

(
|x|δ

)
. For example,

〈x〉δ
′

∈ W k,p
δ for every δ′ < δ, but 〈x〉δ 6∈ W k,p

δ . More importantly, differentiation takes W k,p
δ to

W k−1,p
δ−1 , so the derivative of a function in W k,p

δ looses an order of growth at infinity. As we will see,

this second property is central to the good scaling properties of these spaces.

Let Ar be the annulus Br \ B r
2
. Then on Ar we have mαrα ≤ w(x)α ≤ Mαrα where mα and

Mα are independent of r > 1. So

r−pδ−n+p|β|||∂βu||pLp(Ar) . ||w(x)−δ−n
p
+|β| ∂βu||pLp(Ar) . r−pδ−n+p|β|||∂βu||pLp(Ar),

where the implicit constants are independent of r ≥ 1 and u. Since
∫

Ar

∣∣∣∂βu
∣∣∣
p

dV = rn−p|β|

∫

A1

∣∣∣∂βSru
∣∣∣
p

dV

we find

r−pδ||∂βSru||
p
Lp(A1) . ||w(x)−δ−n

p
+|β| ∂βu||pLp(Ar) . r−pδ||∂βSru||

p
Lp(A1).

Thus an equivalent norm for the norm on W k,p
δ is

||u||p
W̃ k,p

δ

= ||u||p
W k,p(B1)

+
∞∑

j=1

2−pδj ||S2j u||p
W k,p(A1)

. (3.1)

This form of the norm, as indicated in [Ba86], makes computations with these spaces more trans-

parent. For example, we have from interior elliptic estimates

||S2j u||W k,p(A1) . ||∆S2j u||W k−2,p(B2\B 1
4
) + ||S2j u||Lp(B2\B 1

4
)

. 22j ||S2j ∆u||W k−2,p(B2\B 1
4
) + ||S2j u||Lp(B2\B 1

4
)

Since B2 \ B 1
4
⊂ A 1

2
∪ A1 ∪ A2, an easy computation shows

||S2j u||p
W k,p(A1)

.

1∑

i=−1

22p(i+j)||S2i+j ∆u||p
W k−2,p(A1)

+

1∑

i=−1

||S2i+j u||pLp(A1)
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and we conclude

||u||
W k,p

δ
. ||∆u||

W k−2,p
δ−2

+ ||u||Lp
δ
.

If the embedding W k,p
δ ⊂ Lp

δ were compact, this inequality would imply ∆ : W k,p
δ → W k−2,p

δ−2 is

semi-Fredholm (i.e. has closed range and finite dimensional kernel). In fact, this embedding sits

at the threshold of being compact, and McOwen [Mc79] showed that for all but a few values of δ,

∆ : W k,p
δ → W k−2,p

δ−2 is indeed Fredholm. We will say δ is exceptional if δ ∈ Z and δ ≥ 0 or

δ ≤ 2 − n. We have

Theorem 3.1 [Mc79] Suppose δ ∈ R is non-exceptional, 1 < p < ∞ and k ≥ 2. Then ∆ :

W k,p
δ (Rn) → W k−2,p

δ−2 (Rn) is Fredholm and

||u||
W k,p

δ
. ||∆u||

W k−2,p
δ−2

+ ||u||Lp

δ′

for every δ′ ∈ R. This map is injective when δ < 0 and is surjective when δ > 2 − n. In particular,

it is an isomorphism when 2 − n < δ < 0.

The exceptional values δ = 0, 1, 2, · · · arise from the harmonic polynomials with these orders of

growth. For example, the trouble at δ = 0 comes from the constants which belong to W k,p
δ for δ > 0

but not for δ < 0. To see that ∆ : W 2,p
0 → Lp

−2 cannot be Fredholm we first note that if u were

harmonic and in W 2,p
0 , then from (3.1) and interior estimates one can show that u is smooth and

bounded. But a bounded harmonic function is constant, and the constants do not belong to W 2,p
0 .

So ∆ has trivial kernel on W 2,p
0 . If it were Fredholm, it would have closed range and we would

have the estimate

||u||W 2,p
0

. ||∆u||W 0,p
−2

. (3.2)

Let u be a function equal to 1 on B1 and equal to 0 outside B2. Then S 1
r
u is equal to 1 on Br,

and this family of functions can be thought of as an approximating a constant function that nearly

belongs to W 2,p
0 . It is easy to see that for r > 1

log(r) . ||S 1
r
u||p

Lp
0
≤ ||S 1

r
u||p

W 2,p
0

. (3.3)

On the other hand, ∆S 1
r
u is supported in the annulus A2r. Rescaling we find

||∆S 1
r
u||Lp

−2(
�

n) . ||∆u||Lp(A1). (3.4)
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From (3.2), (3.3) and (3.4) we obtain the impossible estimate log(r) . 1 for all r ≥ 1. So ∆ cannot

be Fredholm for δ = 0.

Since the constants belong to W 2,p
δ for δ > 0, it follows that ∆ is not injective on these spaces.

A duality argument shows that ∆ is not surjective for δ < 2 − n. To see this, we consider ∆ :

W 2,p
δ → Lp

δ−2. The dual space of Lp
δ−2 is Lp′

2−n−δ where p′ is the usual dual exponent to p. In

particular, if δ < 2 − n, then 2 − n − δ > 0 and hence 1 ∈ Lp′

2−n−δ . So if f = ∆u we have

〈1, f〉 = 〈1,∆u〉 = 〈∆1, u〉 = 0

where the integration by parts is easily justified by approximating u with smooth compactly sup-

ported functions. More succinctly, if δ < 2−n then the adjoint of ∆ : W 2,p
δ → Lp

δ−2 has nontrivial

kernel and hence ∆ cannot be onto. The exceptional values δ = 2 − n, 1 − n,−n, · · · are dual to

those at δ = 0, 1, 2, · · · . The most important range of values of δ is (2 − n, 0), for in this range ∆

is an isomorphism. Our estimates for the scalar and vector Laplacians will all be restricted to the

isomorphism range.

Weighted function spaces have been used to study elliptic operators on non-compact manifolds

in a number of contexts, e.g. [Ca79b] [CBC81] [LM85] [Ba86]. All of these works use the spaces

W k,p
δ defined above. Our primary tool in investigating low regularity solutions of the constraint

equations, however, is a little-used generalization of these spaces more closely related to the spaces

Hs where s ∈ R. Before we examine the properties of these spaces, it is helpful to start with a brief

review of the more familiar spaces W k,p
δ .

3.2 Properties of Lp based weighted Sobolev spaces

The following properties can be found in or easily follow from facts in [Ba86]. The principal tool

in establishing all of these claims is the alternate norm W̃ k,p
δ in (3.1).

Lemma 3.2

1. If p ≥ q and δ′ < δ then Lp
δ′(R

n) ⊂ Lq
δ(R

n).

2. For k ≥ 1 and δ′ < δ the inclusion W k,p
δ′ (Rn) ⊂ W k−1,p

δ (Rn) is compact.
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3. If p < n/k then W k,p
δ (Rn) ⊂ Lr

δ(R
n) for every r with 1

p − k
n ≤ 1

r ≤ 1
p .

4. If p = n/k then W k,p
δ (Rn) ⊂ Lr

δ(R
n) for all r ≥ p.

5. If 1/p < k/n then W k,p
δ (Rn) ⊂ Lr

δ(R
n) for all r ≥ p and W k,p

δ (Rn) ⊂ C0
δ (Rn).

5. If 1
r = 1

p1
+ 1

p2
≤ 1, then pointwise multiplication is a continuous bilinear map Lp1

δ1
×Lp2

δ2
→

Lr
δ1+δ2

.

6. Pointwise multiplication is a continuous bilinear map C 0
δ1
× Lp

δ2
→ Lp

δ1+δ2
.

Moreover, all the inclusions mentioned above are continuous.

For the most part, intuition about Sobolev spaces on bounded domains transfers over to the

weighted setting. There are a couple of points that need care, however. First, we do not have a

continuous embedding Lp
δ ⊂ Lq

δ for p 6= q (compare with property 1 of Lemma 3.2). When p < q,

the failure arises since Lp 6⊂ Lq, even on compact sets. When p > q the failure stems instead

from the fact that lp is not contained in lq. In general, the norm on a W k,p
δ space can control the

norm on a W l,q
δ space without a loss of decay only if p ≤ q. For example, the Sobolev embedding

||u||
W k−1,r

δ
. ||u||

W k,p
δ

follows this rule of thumb because r ≥ p.

The second fact that needs care is that the embedding W k,p
δ ⊂ W k−1,p

δ is continuous, but is not

compact. To see this, let u be any function with support contained in A1 and let uj = 2δjS2−j u.

Then ||uj ||W̃ k,p
δ

= ||u||W k,p(A1) and ||uj ||W̃ k−1,p
δ

= ||u||W k−1,p(A1). So the sequence {uj}
∞
j=1 is

bounded in W k,p
δ , and if it had a convergent subsequence in W k−1,p

δ , the limit function would have

non-zero norm. But uk converges to 0 uniformly on compact sets. The embedding W k,p
δ′ ⊂ W k−1,p

δ

is compact for δ′ < δ because the condition δ′ < δ ensures that these traveling bumps converge to 0

in W k−1,p
δ .

3.3 Properties of Hs based weighted Sobolev spaces

In [Tr76a][Tr76b] Triebel introduced a family of weighted spaces that generalize the spaces W k,p
δ

we have already seen. We recall the Sobolev spaces for s ∈ R and p ∈ (1,∞)

Hs,p(Rn) =
{
u ∈ S∗ : ||u||Hs,p

δ (
�

n) = ||F−1 〈ξ〉s Fu||Lp < ∞
}

,
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where F is the Fourier transform. For k a non-negative integer, H k,p = W k,p. We also have the

more familiar Hilbert spaces Hs = Hs,2. When s is not an integer, these spaces do not have nice

localization properties enjoyed by the spaces W k,p, and this makes defining the weighted versions

of these spaces somewhat more technical. The key is a variation of the rescaled norm (3.1).

Let φ0 be a cutoff function equal to 1 on a neighbourhood of B1 and supported in B2. We define

φ = φ0 − S2φ0 and for j ≥ 1 φj = S2−j φ. It is easy to see that when j ≥ 1, φj is supported in

B2j+1 \ B2j−1 and that
N∑

k=0

φk = S2−kφ0.

Hence {φj}
∞
j=0 is a partition of unity subordinate to a cover of R

n by B2 and a collection of rescaled

annuli. This type of partition of unity is commonly used in Littlewood-Payley theory.

We now define

Hs,p
δ (Rn) =



u ∈ S∗ : ||u||p

Hs,p
δ

=
∞∑

j=0

2−pδj ||S2j (φju)||pHs,p < ∞





Hs
δ (Rn) = Hs,2

δ (Rn).

We have chosen to use this norm, from the several norms that Triebel showed were equivalent

on these spaces, for its usefulness in computations. Its relationship to the norm W̃ k,p is readily

apparent. We note that our convention for the growth parameter δ follows Bartnik’s for the spaces

W k,p
δ and is different from Triebel’s. Our spaces H s,p

δ correspond with the spaces hs,p
2,ps−pδ−n in

[Tr76a]. For the most part, we restrict our attention to the spaces H s
δ . We will, however, occasionally

use the spaces Hs,p
δ when s is an integer as endpoints for interpolation.

As with the unweighted Sobolev spaces, interpolation plays a fundamental role in working with

spaces with a non-integral number of derivatives. Given a pair of Banach space A0 and A1 and

a number θ ∈ (0, 1), complex interpolation yields a Banach space [A0, A1]θ with the following

properties.

1. A1 ∩ A0 ⊂ [A0, A1]θ ⊂ A0 + A1.

2. [A0, A1]θ = [A1, A0]1−θ .
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3. If L is a linear map from A0 + A1 to B0 + B1 that restricts to a continuous linear map Li :

Ai → Bi for i = 0 and 1, then L also restricts to a continuous linear map Lθ : [A0, A1]θ →

[B0, B1]θ . Moreover, ||Lθ|| ≤ ||L0||
1−θ||L1||

θ.

3. If A1 ⊂ A0, B1 ⊂ B0, and C1 ⊂ C0, and if L0 is a continuous bilinear map L0 : A0 ×

B0 → C0 that restricts to a continuous bilinear map L1 : A1 × B1 → C1, then L0 also

restricts to a continuous bilinear map Lθ : [A0, A1]θ × [B0, B1]θ → [C0, C1]θ . Moreover,

||Lθ|| ≤ ||L0||
1−θ||L1||

θ .

For a comprehensive discussion of interpolation functors, both real and complex, the reader is re-

ferred to [Tr95]. The weighted Sobolev spaces have a natural interpolation property, which we list

below along with other basic facts similar to those in Lemma 3.2.

Lemma 3.3

1. When k is a non-negative integer, an equivalent norm for H k,p
δ is the norm on W k,2

δ .

2. If θ ∈ (0, 1), s = (1 − θ)s0 + θs1, 1
p = 1−θ

p0
+ θ

p1
, and δ = (1 − θ)δ0 + θδ1, then Hs,p

δ is the

interpolation space [Hs0,p0

δ0
,Hs1,p1

δ1
]θ.

3. Hs
δ is the dual space of H−s

−n−δ.

4. If s ≥ s′ and δ ≤ δ′ then Hs
δ is continuously embedded in Hs′

δ′ . If s > s′ and δ < δ′, then

this embedding is compact.

5. If s < n/2, then Hs
δ is continuously embedded in Lq

δ , for every q with 1
2 − s

n ≤ 1
q ≤ 1

2 .

6. If s = n/2, then Hs
δ is continuously embedded in Lq

δ , for every q ≥ 2.

7. If s > n/2 then Hs
δ (Rn) is continuously embedded in C0

δ (Rn), where ||f ||C0
δ

= supx∈
�

n(1+

|x|)−δ |f | .

8. If u ∈ Hs
δ , then ∂u ∈ Hs−1

δ−1 .
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Proof: All these claims follow immediately from [Tr76a] [Tr76b] except for claims 7, 8 and the

compact embedding Hs
δ ↪→ Hs′

δ′ when s > s′ and δ < δ′.

To prove claim 7, we know from [Tr76a] that H s
δ embedded in W k,p

δ for k an integer with k < s

and k > n/p. The claim now follows from the corresponding fact for W k,p
δ spaces. Claim 8 follows

easily from the corresponding property of the W k,p
δ spaces, interpolation, and duality.

We now turn to the compactness argument. Let {uk}
∞
k=1 be a sequence in Hs

δ with ||uk||Hs
δ
≤

1. Then the sequence {φ0uk}
∞
k=1 is bounded in Hs and each element has support contained in

the ball B2. From Rellich’s theorem, we infer the existence of a subsequence {u0
k}

∞
k=0 such that

{φ0u
0
k}

∞
k=1 is Cauchy in Hs′ and such that ||χ0(u

0
k − u0

l )||Hs′ ≤ 1 for all k, l ≥ 1. Similarly ,

the sequence {SS1
2
(φ1u

0
k)}

∞
k=1 is bounded in Hs and has uniformly compact support. So there is a

sub-subsequence {u1
k}

∞
k=1 such that {S2(φ1u

1
k)}

∞
k=1 is Cauchy in Hs′ and

1∑

j=0

2−2δ′j||S2j (φj(u
1
k − u1

l ))||
2
Hs′ <

1

2

for k, l ≥ 1. Continuing iteratively, we obtain sub-subsequences {um
k }∞k=1 such that for k, l ≥ 1,

m∑

j=0

2−2δ′j||S2j (φj(u
m
k − um

l )||2
Hs′ <

1

2m

Let vk = uk
1 . Then if k, l ≥ N , since δ′ > δ,

||vk − vl||
2
Hs′

δ′
=

∞∑

j=0

2−2δ′j ||S2j (φj(vk − vl))||
2
Hs′

=

N∑

j=0

2−2δ′j ||S2j (φj(vk − vl))||
2
Hs′ +

∞∑

j=N+1

2−2δ′j ||S2j (φj(vk − vl))||
2
Hs′

≤ 2−N + 2−2(δ′−δ)(N+1)
∞∑

j=N+1

2−2δj ||S2j (φj(vk − vl))||
2
Hs

≤ 2−N + 2−2(δ′−δ)(N+1)||vk − vl||
2
Hs

δ
.

Since the sequence {vk}
∞
k=1 is bounded in Hs

δ and since δ′ > δ, we conclude the sequence is Cauchy

in Hs′

δ′ , which proves the result. ut

Since the differential operators we consider have coefficients belonging to weighted Sobolev

spaces, we need to know multiplication rules for functions in these spaces. The first step is to know

how to multiply functions in Hs. Although the following result is elementary, we prove it here

because it is fundamental.
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Lemma 3.4 Suppose s3 ≤ min(s1, s2), s1 + s2 ≥ 0, and s3 < s1 + s2 − n
2 . Then pointwise

multiplication extends to a continuous bilinear map

Hs1(Rn) × Hs2(Rn) → Hs3(Rn).

Proof: We first show that when s > n/2, then H s is an algebra. The proof starts from the well

known fact that W k,p is an algebra when k > n/p (this is an easy consequence of Sobolev embed-

ding). Let k = [s] (i.e. k is the largest integer with k ≤ s) and θ = s − k. If θ = 0, the result

follows since Hs = W s,2. Otherwise, let

1

p
=

1

2
−

θ

n

1

q
=

1

2
+

1 − θ

n
.

Since n ≥ 2 and θ ∈ (0, 1) we have 1 < q < 2 < p < ∞. Moreover,

1

p
−

k + 1

n
=

1

q
−

k

n
=

1

2
−

s

n
< 0.

So multiplication is a continuous bilinear map

W k+1,p × W k+1,p → W k+1,p

W k,q × W k,q → W k,q.

Since k(1 − θ) + (k + 1)θ = k + θ = s, and since

θ

q
+

1 − θ

p
=

1

2

we have [W k,q,W k+1,p]θ = Hs. It follows from interpolation that multiplication extends to a con-

tinuous bilinear form

Hs × Hs → Hs.

Since Hs ⊂ C0 we also have a continuous bilinear map

Hs × H0 → H0,

and from interpolation

Hs × Ht → Ht
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for all t ∈ [0, s]. We have therefore proved the result when s3 ≥ 0 and when either s1 > n/2 or

s2 > n/2.

Now multiplication takes H0 × H0 → L1. Since L1 acts continuously on C0, and since Hs ⊂

C0 when s > n/2, it follows that multiplication takes

H0 × H0 → H−n
2
−ε

for every ε > 0. Interpolating between the maps

H
n
2
+ε × H0 → H0

H0 × H0 → H−n
2
−ε

we obtain a continuous map

Ht × H0 → Ht−n
2
−ε

for every t ∈ [0, n
2 ] and ε > 0. Finally, interpolating between

H
n
2
+ε × Ht → Ht

H0 × Ht → Ht−n
2
−ε

we obtain

Hs × Ht → Hs+t−n
2
−ε

for s, t ∈ [0, n
2 ] and ε > 0. Letting s1 = s and s2 = t, we have now proved the lemma in the case

s1 ≥ 0 and s2 ≥ 0.

We now turn to the case s1 < 0, which we treat by duality. If u ∈ Hs1
δ and v, φ ∈ C∞

c , then

|〈uv, φ〉| = |〈u, vφ〉| ≤ ||u||Hs1 ||vφ||H−s1

We want to apply the previous result to estimate

||vφ||H−s1 . ||v||Hs2 ||φ||H−s3 .

This requires s2, −s3, and −s1 are all non-negative, s2 − s3 > −s1 −
n
2 , and −s1 ≤ min(s2,−s3).

It is easy to verify that all these conditions hold under the hypotheses when s1 < 0, and we find

|〈uv, φ〉| . ||u||Hs1 ||v||Hs2 ||φ||H−s3 .

Hence multiplication extends to a continuous bilinear map in this case also. The alternate case

s2 < 0 follows from symmetry and we are done.

ut
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A similar multiplication rule holds for weighted spaces, taking into account the the additive

behaviour of the decay parameter δ.

Lemma 3.5 Suppose s3 ≤ min(s1, s2), s1 + s2 ≥ 0, and s3 < s1 + s2 −
n
2 . For any δ1, δ2 ∈ R,

pointwise multiplication extends to a continuous bilinear map

Hs1
δ1

(Rn) × Hs2
δ2

(Rn) → Hs3
δ1+δ2

(Rn).

Proof: Suppose ui ∈ Hsi
δi

. Taking φk = 0 for k < 0 we have

S2j (φju1u2) = S2j (φj)

j+1∑

k=j−1

S2j (φku1)

j+1∑

l=j−1

S2j (φlu2).

From the restrictions on s, s1, and s2 we know from Lemma 3.4 that multiplication is a continuous

bilinear map on the corresponding unweighted Sobolev spaces. Noting that S2j φj = S2kφk for

j, k ≥ 1, we find

||S2j (φju1u2)||
2
Hs .

j+1∑

k,l=j−1

||S2j (φku1)||
2
Hs1 ||S2j (φlu2)||

2
Hs2

.

j+1∑

k,l=j−1

||S2j−kS2k(φku1)||
2
Hs1 ||S2j−lS2l(φlu2)||

2
Hs2 .

Now S2j−k must be one of S2−1 , S20 , or S21 , and a same result holds for S2j−l . These operators are

independent of j and we find

||S2j (φju1u2)||
2
Hs .

j+1∑

k,l=j−1

||S2k(φku1)||
2
Hs1 ||S2l(φlu2)||

2
Hs2 .

It follows that

∞∑

j=0

2−2δj ||S2j (φju1u2)||
2
Hs .

∞∑

j=0

2−2δj
j+1∑

k,l=j−1

||S2k(φku1)||
2
Hs1 ||S2l(φlu2)||

2
Hs2

.

1∑

k=−1

∞∑

j=0

[
2−2δ1j ||S2j (φju1)||

2
Hs1×

× 2−2δ2(j+k)||S2j+k(φj+ku2)||
2
Hs2

]

.

∞∑

j=0

2−2δ1j||S2j (φju1)||
2
Hs1

∞∑

k=0

2−2δ2k||S2k(φku2)||
2
Hs2 .

This proves ||u1u2||Hs
δ1+δ2

. ||u1||Hs1
δ1

||u2||Hs2
δ2

. ut
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We will be working with semilinear equations of the form

−∆u = f(x)F (u)

where f and u belong to weighted spaces and F is smooth. If u ∈ H s
ρ with s > n/2, then u is

continuous and so is F (u). We should also expect that F (u) is just as regular as u, so F (u) ∈ H s
loc.

Since s > n/2, multiplication by functions in H s
ρ does not alter the regularity of functions in

Ht
δ for t ∈ [−s, s]. So we would expect that under suitable restrictions, multiplication by F (u)

should not alter the smoothness of f(x). Moreover, if ρ < 0, then F (u) → F (0) near infinity. So

multiplication by F (u) should also not alter the order of growth of f(x). The following Lemma

shows that these expectations are correct.

Lemma 3.6 Suppose f : R → R is smooth. If u ∈ H s
ρ with s > n/2 and ρ < 0, and if v ∈ Hσ

δ

with σ ∈ [−s, s] and δ ∈ R, then

f(u)v ∈ Hσ
δ .

Moreover, the map taking (u, v) to f(u)v is continuous from H s
ρ × Hσ

δ to Hσ
δ .

Proof: It is easy to verify that if u ∈ Hs with s > n/2, and if η is smooth and compactly

supported, then ηf(u) ∈ Hs and the map taking u to ηf(u) is continuous from H s to Hs.

Now suppose u and v satisfy the hypotheses of the lemma. Then

||f(u)v||2Hσ
δ

=
∞∑

j=0

2−2δj ||S2j (φjf(u)v)||2Hσ

=
∞∑

j=0

2−2δj

∣∣∣∣∣∣

∣∣∣∣∣∣

j+1∑

k=j−1

(S2j φk)f


S2j

j+1∑

i=j−1

φiu


S2j φjv

∣∣∣∣∣∣

∣∣∣∣∣∣

2

Hσ

.

∞∑

j=0

2−2δj

∣∣∣∣∣∣

∣∣∣∣∣∣

j+1∑

k=j−1

(S2j φk)f




j+1∑

i=j−1

S2j−iS2iφiu




∣∣∣∣∣∣

∣∣∣∣∣∣

2

Hs

||S2j φjv||
2
Hσ .

Let η =
∑2

k=0 S2kφ1, so that for j > 1 we have
∑j+1

k=j−1(S2j φk) = η. Since ρ > 0, S2iφiu

converges to 0 in Hs. It follows that
∑j+1

i=j−1 S2j−iS2iφiu converges to 0 in Hs as well. Hence

ηf
(∑j+1

i=j−1 S2j−iS2iφiu
)

converges in Hs to ηf(0), and we conclude that there exists a bound M

such that ∣∣∣∣∣∣

∣∣∣∣∣∣

j+1∑

k=j−1

(S2j φk)f




j+1∑

i=j−1

S2j−iS2iφiu




∣∣∣∣∣∣

∣∣∣∣∣∣
Hs

≤ M (3.5)



39

for all j > 1. The cases j = 0 and j = 1 can be treated similarly. We conclude, taking M

sufficiently large, that (3.5) holds for all j ≥ 0. Hence

||f(u)v||2Hσ
δ

. M2||v||2Hσ
δ
. (3.6)

This proves that f(u)v ∈ Hσ
δ .

To establish the continuity of the map (u, v) 7→ f(u)v acting on H s
ρ × Hσ

δ , we consider any

sequence {uk, vk}
∞
k=1 converging to (u, v). Then

f(u)v − f(uk)vk = f(u)(v − vk) − (f(u) − f(uk))vk.

From (3.6) we see that f(u)(v − vk) → 0 in Hσ
δ . We wish to establish (f(u) − f(uk))vk → 0 as

well.

Computing as before we find

||(f(u) − f(uk))vk||
2
Hσ

δ
.

∞∑

j=0

2−2δj ||S2j φjvk||
2
Hσ

∣∣∣∣∣∣

∣∣∣∣∣∣

j+1∑

l=j−1

(S2j φl) [f (Rju) − f (Rjuk)]

∣∣∣∣∣∣

∣∣∣∣∣∣

2

Hs

. ||vk||Hσ
δ

sup
j≥0

∣∣∣∣∣∣

∣∣∣∣∣∣

j+1∑

l=j−1

(S2j φl) [f (Rju) − f (Rjuk)]

∣∣∣∣∣∣

∣∣∣∣∣∣

2

Hs

,

where Rjw =
∑j+1

i=j−1 S2j−iS2iφiw. Since {vk}
∞
k=1 is bounded in Hσ

δ , it is enough to show

sup
j≥0

∣∣∣∣∣∣

∣∣∣∣∣∣

j+1∑

l=j−1

(S2j φl) [f (Rju) − f (Rjuk)]

∣∣∣∣∣∣

∣∣∣∣∣∣

2

Hs

→ 0 (3.7)

as k → ∞.

Let η =
∑2

k=0 S2kφ1, so that for j > 1 we have
∑j+1

l=j−1(S2j φl) = η. The map taking u to

ηf(u) is continuous from Hs to Hs. So for any fixed ε > 0 there exists an α > 0 such that if

||u||Hs < α, then ||ηf(u) − ηf(0)||Hs < ε. Now

||η [f (Rju) − f (Rjuk)]||Hs ≤ ||ηf (Rju) − ηf(0)||Hs + ||ηf (Rjuk) − ηf(0)||Hs . (3.8)

To handle the first term on the right-hand side of (3.8) we note that since ρ > 0, S2iφiu → 0 in Hs.

Hence there is an N > 1 such that if j ≥ N , then

||Rju||Hs = ||

j+1∑

i=j−1

S2j−iS2iφiu||Hs <
α

2
.
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Consequently, for j ≥ N ,

||ηf (Rju) − ηf(0)||Hs < ε. (3.9)

We now turn to the second term of the right-hand side of (3.8). Since ρ > 0, we have ||S2iφi(uk −

u)||Hs ≤ ||uk − u||Hs
ρ

for every i. Taking k sufficiently large we can therefore ensure that

||Rj(uk − u)||Hs = ||

j+1∑

i=j−1

S2j−iS2iφi(uk − u)||Hs <
α

2

for every j > 0. We obtain for j ≥ N and k sufficiently large

||Rjuk||Hs ≤ ||Rju||Hs + ||Rj(uk − u)||Hs

<
α

2
+

α

2
= α.

Hence for j ≥ N and k sufficiently large

||ηf (Rjuk) − ηf(0)||Hs < ε. (3.10)

Combining (3.9) and (3.10) we conclude

sup
j≥N

∣∣∣∣∣∣

∣∣∣∣∣∣

j+1∑

l=j−1

(S2j φl) [f (Rju) − f (Rjuk)]

∣∣∣∣∣∣

∣∣∣∣∣∣
Hs

≤ 2ε

for k sufficiently large. On the other hand,

N−1
sup
j=0

∣∣∣∣∣∣

∣∣∣∣∣∣

j+1∑

l=j−1

(S2j φl) [f (Rju) − f (Rjuk)]

∣∣∣∣∣∣

∣∣∣∣∣∣
Hs

can be made as small as we please by taking k sufficiently large, since each of the finitely many terms

in the supremum tends to 0 as k goes to infinity. We have hence established (3.7) and therefore also

the desired continuity. ut

Since 1 ∈ Hs
ε for every ε > 0 we have from Lemma 3.6 that if u ∈ H s

ρ with s > n/2 and ρ < 0,

then f(u) = f(u) · 1 ∈ Hs
ε for every ε > 0. The following corollary shows that if f(0) = 0 we can

say more.

Corollary 3.7 Suppose f : R → R is smooth and f(0) = 0. If u ∈ H s
ρ with s > n/2 and ρ < 0

then f(u) ∈ Hs
ρ and the map taking u to f(u) is continuous from H s

ρ to Hs
ρ .

Proof: Since f(0) = 0 we have from Taylor’s theorem that f(x) = F (x)x where F is smooth.

Hence f(u) = F (u)u ∈ Hs
ρ by Lemma 3.6, and the continuity of the map on H s

ρ follows similarly.

ut



41

Remark 1 In practice we will use an obvious improvement to Lemma 3.6 and Corollary 3.7. It is

easy to see that if f is only smooth on an open interval I , and if [inf u, supu] ⊂ I , then f(u)v ∈ H σ
δ

and the map (u, v) 7→ f(u)v is continuous on U × Hσ
δ for some neighbourhood U of u. An

analogous statement for Corollary 3.7 also holds.

3.4 Asymptotically Euclidean Manifolds

An asymptotically Euclidean manifold is a non-compact Riemannian manifold that can be decom-

posed into a compact core and a finite number of ends {Ni}
m
i=1. Each end Ni is diffeomorphic to

the region exterior to the closed unit ball in R
n, and the metric on Ni is asymptotic to the Euclidean

metric at far distances. This loose description is made precise using weighted function spaces.

Definition 3.8 Let Mn be a smooth, connected, n-dimensional manifold, possibly with boundary,

and let g be a metric on M for which (M, g) is complete. Let Er be the exterior region {x ∈ R
n :

|x| > r}. For s > n/2 and ρ < 0, we say (M, g) is asymptotically Euclidean (AE) of class H s
ρ if

1. The metric g ∈ Hs
loc(M).

2. There exists a finite collection of charts {(Ui,Φi}
m
i=1 on M such that Φi(Ui) = E1 and such

that M − ∪iUi is compact.

3. For each i, and for any smooth function η supported in E1 and equal to 1 on E2,

η
[
(Φ−1

i )∗g − g
]
∈ Hs

ρ(Rn),

where g is the Euclidean metric.

The charts Φi are called end charts and the corresponding coordinates are end coordinates. Sup-

pose (Mn, g) is asymptotically Euclidean, and let {(Ui,Φi)}
m
i=1 be its collection of end charts. We

extend this set to an atlas {(Ui,Φi)}
k
i=1 such that for i > m the set U i is compact. Let {ηi}

k
i=1 be a

partition of unity subordinate to the cover {Ui}
k
i=1, and for i > m let Vi be R

n or R
n
+ depending on

whether (Ui,Φi) is an interior or boundary chart. The weighted Sobolev space H s
δ (M) is the subset

of Hs
loc(M) such that the norm

||u||Hs
δ (M) =

m∑

i=1

||(Φ−
i 1)∗(ηiu)||Hs

δ (
�

n) +

k∑

i=m+1

||(Φ−1
i )∗ηiu||Hs(Vi)
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is finite. We have a similar definition for sections of vector bundles and also for weighted W k,p

spaces and Hölder spaces. We define define H̊s
δ (M) to be the closure of C∞

c (int M) in Hs
δ (M).

We can now define an AE data set (M, g,K) for the initial value problem. This is an AE

manifold (M 3, g) of class Hs
ρ with s > 3/2 and ρ < 0 and a symmetric (0, 2)-tensor K ∈ H s−1

ρ−1 .

The choice of function space for K comes from the fact that K should behave like the first derivative

of the metric.

There are no surprises in translating most facts about H s
δ (R

n) to Hs
δ (M). The proof of the

following Lemma follows from the corresponding results for weighted and unweighted Sobolev

spaces on R
n and partition of unity arguments. We omit the proof.

Lemma 3.9 Lemma 3.3 items 2, 4, 5, 6, and 7 concerning interpolation and embedding as well

as Lemmas 3.5 and 3.6 and Corollary 3.7 concerning multiplication extend to AE manifolds with

boundary by replacing R
n with M in their statements.

We do need to be careful about generalizing the duality

Hσ
δ (Rn) =

(
H−σ

−n−δ(R
n)

)∗

to AE manifolds with boundary. First, since there is a boundary, the most we can hope for is

Hσ
δ (M) =

(
H̊−σ

−n−δ(M)
)∗

.

But even for compact manifolds with boundary, we require a smooth metric (or at least a volume

form) to make a natural identification between Hσ
δ (M) and

(
H̊−σ

−n−δ(M)
)∗

. Using the charts and

partition of unity used to define the norm H s
δ (M), we can put a smooth AE background metric ĝ on

M . We then have a bilinear form defined for u, v ∈ C∞
c (int M) by

〈u, v〉(M,ĝ) =

∫

M
uv dVĝ. (3.11)

Proceeding as for compact manifolds with boundary, the bilinear form (3.11) extends to a continuous

bilinear map

〈·, ·〉(M,ĝ) : Hσ
δ × H̊−σ

−n−δ(M) → R

and induces an isomorphism

Hσ
δ (M) =

(
H̊−σ

−n−δ(M)
)∗

.
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In applications, however, we would rather use the rough metric g instead of the smooth metric ĝ to

induce this isomorphism. This can be done on a restricted range of Sobolev spaces. Since g−ĝ ∈ H s
ρ

in end coordinates, we have dVg = f dVĝ where f > 0 and (f − 1) ∈ Hs
ρ(M). Multiplication by

f is continuous on on Hσ
δ for every σ with |σ| ≤ s, so we can define for u ∈ Hσ

δ and v ∈ H̊−σ
−n−δ

〈u, v〉(M,g) = 〈fu, v〉(M,ĝ) .

For smooth functions u and v we have

〈u, v〉(M,g) =

∫

M
uv dVg

and hence this definition is independent of ĝ. We have therefore established the following.

Lemma 3.10 Suppose (Mn, g) is AE of class Hs
δ with s > n/2 and δ < 0. If |σ| ≤ s then Hσ

δ (M)

is naturally isomorphic to
(
H̊−σ

−n−δ(M)
)∗

through the pairing 〈·, ·〉(M,g).
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Chapter 4

LINEAR THEORY

The Lichnerowicz equation with its boundary condition is

−8∆φ + Rφ − |σ|2 φ−7 = 0

4∂νφ + Hφ − φ−3σ(ν, ν) = 0 on ∂M.
(4.1)

We will solve (4.1) by means of an iterative method using the associated linear boundary value

problem

−∆φ + V φ = F

∂νφ + µφ = f on ∂M.
(4.2)

It turns out we will also require a boundary value problem for the vector Laplacian to construct

suitable transverse-traceless tensors. The Neumann boundary operator B � for the vector Laplacian

takes a vector field X to ν LX = LX(ν, ·). The associated boundary value problem is then

∆ � X = Y

B � X = ω
(4.3)

where ω is a 1-form over the boundary. We require a priori estimates for these boundary value

problems analogous to those in Theorem 3.1 for the Euclidean Laplacian.

The mapping properties of the Laplacian of an AE metric and related linear maps have been

studied extensively in the past under varying hypotheses on the regularity of the coefficients. In

particular, the results of [CBC81] apply to the Laplacian of an AE metric of class H k
ρ where k is an

integer and k > n/2 + 1, and the results of [Ba86] apply to a metric of class W 2,p
ρ where p > n/2.

Boundary value problems such as (4.2) and (4.3) were treated in [LM85] for C∞ metrics. We obtain

here a technical improvement of these works that can be applied to asymptotically Euclidean metrics

of class Hs
ρ with s ∈ R and s > n/2. The improvement is two-fold. We consider a non-integral

number of derivatives, and in dimension 3 we require fewer than 2 derivatives.
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Our approach is to work in local coordinates to first obtain interior estimates, then estimates on

the asymptotically Euclidean ends, and finally estimates at the boundary. For notational convenience

we make the following definition.

Definition 4.1 Let A be the linear differential operator on R
n

A =
∑

|α|≤m

aα∂α,

where aα is a R
k×k valued function. We say that

A ∈ Lm,s

if aα ∈ Hs−m+|α| for all |α| ≤ m. Similarly, if ρ < 0 we say

A ∈ Lm,s
ρ

if aα ∈ H
s−m+|α|
ρ−m+|α| for all |α| < m and if there are constant matrices aα

∞ such that aα
∞ − aα ∈ Hs

ρ

for all |α| = m. We call A∞ =
∑

|α|=m aα
∞∂α the principal part of A at infinity.

When g is an AE metric on R
n of class Hs

ρ with s > n/2 and ρ < 0, then the Laplacian and

vector Laplacian both belong to L2,s
ρ . From Lemmas 3.4 and 3.5 we obtain the following simple

properties.

Corollary 4.2 Suppose

η < σ + s − m −
n

2

η ≤ min(σ, s) − m

m ≤ σ + s.

If A ∈ Lm,s, then A is a continuous map

A : Hσ → Hη.

If δ ∈ R, ρ < 0 and if A ∈ Lm,s
ρ , then A is a continuous map

A : Hσ
δ → Hη

δ−m.

If moreover A∞ = 0, then A is a continuous map

A : Hσ
δ → Hη

δ−m+ρ.
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When s > n/2, the highest order coefficients of A ∈ Lm,s are continuous. It then makes sense

to talk about their pointwise values. We say A is elliptic if for each x, the constant coefficient

operator
∑

|α|=m aα(x)∂α is elliptic. For A ∈ Lm,s
ρ we require additionally that A∞ is elliptic.

4.1 Interior Estimates

For functions u, v ∈ Ck we have a simple estimate on how the kth derivatives of v contribute to the

Ck norm of uv, namely ||uv||Ck . ||u||C0 ||v||Ck + ||u||Ck ||v||Ck−1 . We need an analogous fact for

Sobolev spaces, which will be derived from a commutator estimate for the operator Λ = (1−∆)1/2.

We start with the following estimate for an integral kernel.

Lemma 4.3 Suppose u ∈ L2, s > n/2, and |t| ≤ s. Then the kernel

Ku,s,t(x, y) = 〈x〉t 〈x − y〉−s u(x − y) 〈y〉−t

defines a continuous linear map F from L2 to L2 via

Fu,s,t(v)(x) =

∫
Ku,s,t(x, y)v(y) dV.

Moreover, ||F ||L2 ≤ c(s, t)||u||L2 .

Proof: We note that for smooth u and v,

Fu,s,t(v) = FΛt
(
Λ−sF−1uΛ−tF−1v

)
,

where F is the Fourier transform. Hence

||Fu,s,t(v)||L2 ≤ ||Λt
(
Λ−sF−1uΛ−tF−1v

)
||L2

= ||Λ−sF−1uΛ−tF−1v||Ht .

Since Λ−sF−1u ∈ Hs with s > n/2, and since Λ−tF−1v ∈ Ht with |t| ≤ s we can apply the

multiplication rule Lemma 3.4 to obtain

||Fu,s,t(v)||L2 . ||Λ−sF−1u||Hs ||Λ−tF−1v||Ht = ||u||L2 ||v||L2

where the implicit constant depends on s and t but not on u or v. We can therefore extend Fu,s,t by

continuity to u ∈ L2 and v ∈ L2 and we find ||Fu,s,t|| ≤ c(s, t)||u||. ut
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We now turn to a commutator estimate for [Λσ , u] where u ∈ Hs with s > n/2. If u were

smooth, this would be a pseudo-differential operator of order σ − 1, and would hence take H σ

to H1 instead of H0. The limited smoothness of u prevents us from gaining a full derivative of

regularity, but we can show that under restricted circumstances that the commutator takes H σ to Hθ

for some θ ∈ (0, 1].

Since u is a pseudo-differential operator of order 0 of the low regularity type considered in

[Mar88], much of the following Lemma can be deduced from the commutator estimate [Mar88]

Corollary 3.4. By proving the following estimate by hand, we obtain a mildly stronger result for the

particular operator of interest, and we avoid bringing in the full machinery of pseudo-differential

operators with rough coefficients.

Lemma 4.4 Suppose u ∈ Hs with s > n/2, σ ∈ [−s, s], and suppose θ ∈ [0, 1] satisfies θ <

s − n/2 and θ ≤ s − σ. Then [Λσ , u] is continuous as a map

[Λσ, u] : Hσ → Hθ.

Moreover,

||[Λσ, u]||Hσ . ||u||Hs

for all u ∈ Hs.

Proof: By applying Fourier transforms, it is enough to show that for every U ∈ L2

Λθ[Λσ,Λ−sF−1U ]Λ−σF−1

is continuous from L2 to L2 and ||F ||L2 . ||U ||L2 . Upon taking Fourier transforms, we are thus

lead to consider the integral kernel

KU = 〈ξ〉θ 〈ξ − ζ〉−s U(ξ − ζ)
(
〈ζ〉−σ 〈ξ〉σ − 1

)
.

Writing KU in the form

〈ξ − ζ〉−s U(ξ − ζ) 〈ξ〉θ 〈ζ〉−σ (〈ξ〉σ − 〈ζ〉σ)
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we wish to estimate 〈ξ〉σ − 〈ζ〉−σ . Now

|〈ξ〉σ − 〈ζ〉σ| =

∣∣∣∣
∫ 1

0

d

dt
〈tξ + (1 − t)ζ〉σ dt

∣∣∣∣

.

∣∣∣∣
∫ 1

0

d

dt
〈tξ + (1 − t)ζ〉σ−1 dt

∣∣∣∣ 〈ξ − ζ〉 .

From the monotonicity of the function x 7→ (1 + x2)σ for x ≥ 0 we conclude

|〈ξ〉σ − 〈ζ〉σ| .
(
〈ξ〉σ−1 + 〈ζ〉σ−1

)
〈ξ − ζ〉 .

Hence, for any θ ∈ [0, 1],

|〈ξ〉σ − 〈ζ〉σ| . (〈ξ〉σ + 〈ζ〉σ)1−θ
(
〈ξ〉σ−1 + 〈ζ〉σ−1

)θ
〈ξ − ζ〉θ .

Now for θ ∈ [0, 1] and a, b ≥ 0 we have (a + b)θ ≤ aθ + bθ. We we conclude, after an easy

computation,

|KU (ξ, ζ)| . 〈ξ − ζ〉−s+θ |U(ξ − ζ)|
(
〈ξ〉σ 〈ζ〉−σ + 〈ξ〉(1−θ)σ+θ 〈ζ〉−(1−θ)σ−θ +

〈ξ〉θσ 〈ζ〉−θσ + 〈ξ〉θ 〈ζ〉−θ
)

.

We want to show that the right-hand side is a sum of kernels of the form considered in Lemma 4.3.

This is true so long as s − θ > n/2 and additionally

s + θ ≤ σ ≤ s − θ

−s + θ ≤ θ ≤ s − θ

−s + θ ≤ (1 − θ)σ + θ ≤ s − θ.

If we assume σ ≥ 0, then from the relationships s − θ > n/2 ≥ 1, θ + σ ≤ s and θ ≤ 1, all these

inequalities are obvious except possibly

(1 − θ)σ + θ ≤ s − θ. (4.4)

If 0 ≤ σ ≤ 1, then (1 − θ)σ + θ ∈ [0, 1] and hence (4.4) holds. Otherwise, if s ≥ 1 we have

−θσ ≤ −θ and therefore

(σ + θ) − σθ ≤ (σ + θ) − θ ≤ s − θ
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as required. To handle the case σ < 0 we write KU as

KU = 〈ξ − ζ〉−s U(ξ − ζ) 〈ξ〉σ+θ (
〈ζ〉−σ − 〈ξ〉−σ)

.

A similar computation as before results in the estimate

|KU (ξ, ζ)| . 〈ξ − ζ〉−s+θ |U(ξ − ζ)|
(
1 + 〈ξ〉σ+θ 〈ζ〉−σ−θ + 〈ξ〉−(1−θ)σ 〈ζ〉(1−θ)σ +

〈ξ〉θ(σ+1) 〈ζ〉−θ(σ+1)
)

.

We have the resulting restrictions

s + θ ≤ σ + θ ≤ s − θ

−s + θ ≤ (1 − θ)σ ≤ s − θ

−s + θ ≤ θσ + θ ≤ s − θ.

Since s − θ ≥ n/2, −s ≤ σ ≤ 0 and 0 ≤ θ ≤ 1, all these inequalities are obvious except

−s + θ ≤ (1 − θ)σ.

If −1 ≤ σ ≤ 0 then

−s + θ < −
n

2
≤ −1 ≤ (1 − θ)σ.

Otherwise, σ ≤ −1 and θ ≤ −σθ. Since −s ≤ σ we obtain

−s + θ ≤ σ − θσ

as required.

We have dominated KU by integral kernels that determine continuous involutions of L2 with

norms that depend only on the norm of |U | in L2. Hence KU is also a continuous involution of L2

and ||KU ||L2 . ||U ||L2 . ut

Lemma 4.5 Suppose s > n/2, σ ∈ (−s, s], and θ ∈ (0, 1] satisfies θ < min(s−n/2, s+σ). Then

for all u ∈ Hs and v ∈ Hσ we have

||uv||Hσ . ||u||L∞ ||v||Hσ + ||u||Hs ||v||Hσ−θ . (4.5)
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Proof: For all φ ∈ C∞
c ,

〈uv, φ〉 =
〈
Λσv,Λ−σuφ

〉

=
〈
Λσv, uΛ−σφ

〉
+

〈
v,Λσ [Λ−σ, u]φ

〉
.

. ||u||L∞ ||v||Hσ ||φ||H−σ + ||v||Hσ−θ ||[Λ−σ, u]φ||Hθ .

From Lemma 4.4,

||[Λ−σ, u]φ||Hθ . ||u||Hs ||φ||H−σ .

Hence

||uv||Hσ . ||u||L∞ ||v||Hσ + ||u||Hs ||v||Hσ−θ . (4.6)

ut

We can now prove an interior regularity a-priori estimate for elliptic operators in Lm,s. We

proceed with the proof in two steps working with the high order and low order terms separately.

Proposition 4.6 Suppose s > n/2 and suppose A ∈ Lm,s is elliptic and has only has terms of order

m (i.e. A =
∑

|α|=m aα(x)∂α). If σ ∈ (m − s, s], then for all u ∈ Hσ supported in a compact set

K

||u||Hσ . ||Au||Hσ−m + ||u||Hm−s , (4.7)

where the implicit constant depends on K and A but not on u.

Proof: Fix x0 ∈ K and let ε be a small parameter to be chosen later. Let χ be a cutoff function

equal to 1 on B1 and equal to 0 outside B2, and let χε(x) = χ((x − x0)/ε). Let A = Am +

R where Am is the constant coefficient operator
∑

|α|=m aα(x0)∂α and R =
∑

|α|=m rα∂α =
∑

|α|=m (aα − aα(x0)) ∂α.

From elliptic theory for constant coefficient elliptic operators we have

||χεu||Hσ . ||Amχεu||Hσ−m + ||χεu||Hm−s

. ||Aχεu||Hσ−m + ||Rχεu||Hσ−m + ||χεu||Hm−s

. c(ε)||Au||Hσ−m + ||[A,χε]u||Hσ−m + ||Rχεu||Hσ−m + c(ε)||u||Hm−s .

To estimate the term ||Rχεu||Hσ−m , we have

||rα∂αχεu||Hσ−m = ||χ2εr
α∂αχεu||Hσ−m

. ||χ2εr
α||L∞ ||χεu||Hσ +

∑

|α|=m

||χ2εr
α||Hs ||χεu||Hσ−θ ,
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where θ > 0 is a constant given by Lemma 4.5 satisfying σ − θ > m − s. Taking ε sufficiently

small we we can make ||χ2εr
α||L∞ as small as we please and we obtain for an ε depending only on

A and x0

||χεu||Hσ . c(ε)||Au||Hσ−m + ||[A,χε]u||Hσ−m + c(ε, A, x0)||u||Hσ−θ .

Now [A,χε] ∈ Lm−1,s and hence from Corollary 4.2

||[A,χε]u||Hσ−m . c(ε, A, x0)||u||Hσ−1 .

Since θ ≤ 1, we obtain

||u||Hσ(Bε/2(x)) . c(ε, A, x0) [||Au||Hσ−m + ||u||Hσ−θ ] .

Covering K with finitely many such balls we find

||u||Hσ . ||Au||Hσ−m + ||u||Hσ−θ ,

where the implicit constant depends on K and A. Since σ− θ > m− s, equation (4.7) then follows

from interpolation. ut

Proposition 4.7 Let U and V be open sets with U ⊂⊂ V , and suppose s > n/2 and σ ∈ (m−s, s].

If A ∈ Lm,s is elliptic, then for every u ∈ Hσ we have

||u||Hσ(U) . ||Au||Hσ−m(V ) + ||u||Hm−s(V ). (4.8)

Proof: Choose an open set V0 such that U ⊂⊂ V0 ⊂⊂ V , and let χ be a cutoff function equal to

1 on U and compactly supported in V0. Let A = Am + Alow where Am is the order m operator
∑

|α|=m aα∂α. From Proposition 4.6 we have

||χu||Hσ . ||Amχu||Hσ−m + ||χu||Hm−s

. ||χAu||Hσ−m + ||[A,χ]u||Hσ−m + ||Alowχu||Hσ−m + ||χu||Hm−s . (4.9)

Let χ′ be a second cutoff function equal to 1 on suppχ and also compactly supported in V0. Arguing

as in Proposition 4.6 we have

||[A,χ]u||Hσ−m . ||χ′u||Hσ−1 . (4.10)
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Now Alow ∈ Lm−1,s−1. Pick θ such that θ < s − n
2 and θ ≤ min(1, σ − (m − s)). Then from

Corollary 4.2 we have

||Alowχu||Hσ−m . ||χu||Hσ−θ . (4.11)

Combining equations (4.9)–(4.11), we obtain

||u||Hσ(U) . ||Au||Hσ−m(V0) + ||u||Hσ−θ(V0).

Finally, we obtain (4.8) by a standard iteration procedure working with an increasing sequence of

open sets U ⊂⊂ V0 ⊂⊂ · · · ⊂⊂ VM ⊂⊂ V for some M sufficiently large depending only on s− n
2

and σ − (m − s). ut

4.2 Estimates at Infinity

The key to proving elliptic estimates on weighted spaces is the following generalization of Lemma

5.1 of [CBC81].

Lemma 4.8 Let A be a homogeneous constant coefficient linear elliptic operator of order m < n

on R
n. For s ∈ R and δ ∈ (m − n, 0) we have A : Hs

δ → Hs−m
δ−m is an isomorphism.

Proof: We consider three ranges of s: [m,∞), [−∞, 0] and [0,m].

Let As,δ denote A acting on Hs
δ . From [CBC81] we know that if k is an integer and k ≥ m,

then Ak,δ has an inverse A−1
k,δ. For s ∈ [k, k + 1] we find from interpolation that A−1

k,δ restricts to

a map Bs,δ : Hs−m
δ−m → Hs

δ , and it easily follows that Bs,δ = A−1
s,δ . This establishes the result for

s ∈ [m,∞).

To obtain the result for s ∈ (−∞, 0] we recall that H s
δ =

(
H−s

−n−δ

)∗
. Let A∗ be the adjoint

of A. From the above we know that if s ≤ 0 and if δ ∈ (m − n, 0), then A∗
−s+m,−δ−n+m is an

isomorphism. For u ∈ Hs−m
δ−m let Bs,δu be the distribution defined by

〈Bs,δu, φ〉 =
〈
u, (A∗

−s+m,−δ+m−n)−1φ
〉

for all φ ∈ C∞
0 . Now

| 〈Bs,δu, φ〉 | ≤ ||u||Hs−m
δ−m

||(A∗
−s+m,−δ−n+m)−1||H−s

−δ−n
||φ||H−s

−δ−n
.
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This proves Bs,δu ∈ Hs
δ and we obtain a continuous map from Hs−m

δ−m → Hs
δ . It easily follows from

the definition of Bs,δ that Bs,δ = A−1
s,δ . So the result holds for s ∈ (−∞, 0].

Finally, the result for s ∈ [0,m] is obtained by interpolation. ut

Combining Proposition 4.7 and Lemma 4.8 we have the following mapping property of ellip-

tic operators in Lm,s
ρ on weighted spaces on R

n. The approach of the proof is standard [Ca79b]

[CBC81][Ba86] with some small changes needed to accommodate the weighted H s spaces.

Proposition 4.9 Suppose A ∈ Lm,s
ρ where s > n/2, σ ∈ (m − s, s], and ρ < 0. Then if m − n <

δ < 0, and δ′ ∈ R we have

||u||Hσ
δ

. ||Au||Hσ−m
δ−m

+ ||u||Hs−m
δ′

(4.12)

for every u ∈ Hσ . In particular, A is semi-Fredholm as a map from Hσ
δ to Hσ−m

δ−m .

Proof: Let A = A∞+R where A∞ is the principal part of A at infinity. Let χ be a cutoff function

such that 1 − χ has support contained in B2 and is equal to 1 on B1. Let r be a fixed dyadic integer

to be selected later, let χr(x) = χ(x/r), and let ur = χru. From Lemma 4.8 we have

||ur||Hσ
δ

. ||A∞ur||Hσ−m
δ−m

.

Hence

||ur||Hσ
δ

. ||Aur||Hσ−m
δ−m

+ ||Rur||Hσ−m
δ−m

where the implicit constant does not depend on r. Now R ∈ Lm,s
ρ has vanishing principal part at

infinity. Hence, from Corollary 4.2 we obtain

||Rur||Hσ−m
δ−m

. ||R||Hσ
δ−ρ

||χr/2||Hs
−ρ
||ur||Hσ

δ

From Lemma 4.10 proved below we have

lim
j→∞

||χ2j ||Hσ
−ρ

= 0.

Fixing r large enough we obtain

||ur||Hσ
δ

. ||Aur||Hσ−m
δ−m

. ||χrAu||Hσ−m
δ−m

+ ||[A,χr ]u||Hσ−m
δ−m

. ||Au||Hσ−m
δ−m

+ ||u||Hσ(B2r). (4.13)
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Let u0 = (1 − χr)u. Then ||u0||Hσ(B2r) . ||u||Hσ(B2r) and hence

||u||Hσ
δ

. ||ur||Hσ
δ

+ ||u0||Hσ
B2r

. ||Au||Hσ−m
δ−m

+ ||u||Hσ(B2r)

From Proposition 4.7 we then obtain

||u||Hσ
δ

. ||Au||Hσ−m
δ−m

+ ||u||Hs−m(B3r).

Equation (4.12) now follows since for each δ ′ ∈ R,

||u||Hs−m(B3r) . ||u||Hs−m
δ′

.

That A is semi-Fredholm is an immediate consequence of (4.12) choosing any δ ′ > δ. ut

The following scaling lemma now completes the proof of Proposition 4.9.

Lemma 4.10 Suppose f ∈ Hs
δ with s ∈ R and δ > 0, and suppose f vanishes in a neighbourhood

of the origin. Then

lim
i→∞

||S2−if ||Hs
δ

= 0.

Proof: Without loss of generality we can assume that f vanishes on B2. Then S2j−if = 0 on B2

whenever j ≤ i. So

||S2−if ||2Hs
δ

=
∞∑

j=i+1

2−2δj ||S2j (φjS2−if)||2Hs

= 2−2δi
∞∑

j=1

2−2δj ||S2j (φjf)||2Hs

≤ 2−2δi||f ||2Hs
δ
.

Since δ > 0, the result is proved. ut

4.3 Estimates on Manifolds with Boundary

For simplicity we now restrict our attention to the Neumann problems for the Laplacian and vector

Laplacian. If Ω ⊂ R
n is a bounded open subset with smooth boundary, we have the following

classical estimate for a smooth metric on Ω and s > 3/2.

||u||Hs(Ω) . ||∆u||Hs−2(Ω) + ||∂νu||
Hs− 3

2 (∂Ω)
+ ||u||H0(Ω) (4.14)
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This estimate is familiar when s ≥ 2 from [Hö85], and can be proved using the theory of weak

solutions (e.g. [Mc00]) and the interpolation method of [LE72]. Similarly, we have for s > 3/2

||X||Hs(Ω) . ||∆ � X||Hs−2(Ω) + ||B � X||
Hs− 3

2 (∂Ω)
+ ||X||H0(Ω). (4.15)

Extending the coefficient freezing arguments of Section 4.1 we now show we have similar estimates

for rough metrics. The first step is the generalization of Lemma 4.5 to bounded domains.

Lemma 4.11 Let Ω be a bounded domain with smooth boundary. Suppose u ∈ H s(Ω) and v ∈

Hσ(Ω) with s > n/2, σ ∈ (−s, s], and θ ∈ (0, 1] satisfies θ < min(s − n/2, s + σ). Then

||uv||Hσ(Ω) . ||u||L∞(Ω)||v||Hσ(Ω) + ||u||Hs ||v||Hσ−θ(Ω). (4.16)

Proof: Let N be an integer with N > s. From [Tr95] we know there exists an extension operator

E taking Hσ(Ω) to Hσ(Rn) for all σ with |σ| ≤ N and such that

||ENu||L∞(
�

n) . ||ENu||L∞(Ω) (4.17)

for all u ∈ L∞(Ω) ∩ Hσ(Rn). Now restriction is a continuous map from Hσ(Rn) to Hσ(Ω), so

||uv||Hσ(Ω) . ||E(u)E(v)||Hσ (
�

n). (4.18)

From Lemma 4.5 applied to the right hand side of (4.18) together with the continuity of the extension

map and (4.17) we find

||uv||Hσ(Ω) . ||E(u)||L∞(
�

n)||E(v)||Hσ (
�

n) + ||E(u)||Hs(
�

n)||E(v)||Hσ−τ (
�

n)

. ||u||L∞(Ω)||v||Hσ(Ω) + ||u||Hs(Ω)||E(v)||Hσ−τ (Ω)

as required. ut

Proposition 4.12 Suppose Ω is a bounded open subset of R
n with smooth boundary, s > n/2, and

g ∈ Hs(Ω) is a metric on Ω. Then

||X||Hs(Ω) . ||∆ � X||Hs−2(Ω) + ||B � X||
Hs− 3

2 (∂Ω)
+ ||X||H0(Ω), (4.19)

for all X ∈ Hs(Ω), and

||u||Hs(Ω) . ||∆u||Hs−2(Ω) + ||∂νu||
Hs− 3

2 (∂Ω)
+ ||u||H0(Ω), (4.20)

for all u ∈ Hs(Ω).
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Proof: We treat the case of the vector Laplacian; the proof for the scalar Laplacian proceeds iden-

tically. Fix x0 ∈ ∂Ω. Let χ be a cutoff function supported in B1 and equal to 1 on B 1
2
. Let

χε(x) = χ((x − x0)/ε), and let ∆0� and B0� be the constant coefficient differential operators corre-

sponding to the metric g(x0). Then from (4.15)

||χεX||Hs(Ω) . ||∆0� χεX||Hs−2(Ω) + ||B0� χεX||
Hs− 3

2 (∂Ω)
+ ||χεX||H0(Ω).

To treat the boundary term we write

B0� χεX = χεB
� X + [B � , χε]X + (B0� − B � )χεX. (4.21)

Now ν can be extended off the boundary as an H s(Ω) vector field ν̂, and B � X is the restriction of

L(X)(ν̂, ·) to the boundary. Let E � X = L(X)(ν̂, ·), and let E0� be the constant coefficient operator

corresponding to g0. From the trace laws

||[B � , χε]X||
Hs− 3

2 (∂Ω)
. ||[E � , χε]X||Hs−1(Ω)

||(B0� − B � )χεX||
Hs− 3

2 (∂Ω)
. ||(E0� − E � )χεX||Hs−1(Ω).

Now [E � , χε] is just an Hs(Ω) function and hence

||[E � , χε]X||Hs−1(Ω) . ||[E � , χε]||Hs(Ω)||X||Hs−1(Ω). (4.22)

On the other hand, (E0� −E � ) can be written as
∑

|α|≤1 aα∂α where aα ∈ Hs−1+|α| and aα(x0) = 0

if |α| = 1. Fix θ ∈ (0, 1] with s − n
2 < θ. When |α| = 1 we obtain from Lemma 4.11

||aα∂αχεX||Hs−1(Ω) . ||χ2εa
α||L∞(Ω)||χεX||Hs(Ω) + ||χ2εa

α||Hs(Ω)||χεX||Hs−θ(Ω). (4.23)

On the other hand, from the multiplication law we obtain for |α| = 0

||aαχεX||Hs−1(Ω) . ||aα||Hs−1(Ω)||χεX||Hs−θ(Ω). (4.24)

Combining equations (4.21), (4.22), (4.23) and (4.24) we arrive at

||B0� χεX||
Hs− 3

2 (∂Ω)
. c(ε)||B � X||

Hs− 3
2 (∂Ω)

+

∑

|α|=1

||χ2εa
α||L∞(Ω)||χεX||Hs(Ω) + c(ε, g, x0)||X||Hs−θ(Ω). (4.25)
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On the other hand, the estimate for

||∆0� χεX||Hs−2(Ω)

proceeds exactly as in the case of no boundary using Lemma 4.11 in place of Lemma 4.5. We

therefore obtain, taking ε small enough to merge the terms involving ||χεX||Hs(Ω) into the right

hand side,

||χεX||Hs(Ω) . c(ε)||∆ � X||Hs−2(Ω) + c(ε)||B � X||
Hs− 3

2 (∂Ω)
+ c(ε, g, x0)||X||Hs−θ(Ω).

Covering the boundary with finitely of the balls B ε
2
(x0) and using the interior estimate Proposition

4.7 to treat the domain away from the boundary we have

||X||Hs(Ω) . ||∆ � X||Hs−2(Ω) + ||B � X||
Hs− 3

2 (∂Ω)
+ ||X||Hs−θ(Ω).

On the other hand, since 0 < s − θ < s, we obtain from interpolation

||X||Hs−θ(Ω) ≤ ε||X||Hs(Ω) + c(ε)||X||H0(Ω)

for any ε > 0. Hence

||X||Hs(Ω) . ||∆ � X||Hs−2(Ω) + ||B � X||
Hs− 3

2 (∂Ω)
+ ||X||H0(Ω).

ut

From a partition of unity argument and Propositions 4.7, 4.9, and 4.12 we have now obtained

the desired estimates for AE manifolds.

Proposition 4.13 Suppose (Mn, g) is AE of class Hs
ρ and with s > n/2 and ρ < 0, and suppose

δ ∈ (2 − n, 0) and δ′ ∈ R. For every vector field X ∈ Hs
δ (M),

||X||Hs
δ (M) . ||∆ � X||Hs−2

δ−2 (M) + ||B � X||
Hs− 3

2 (∂M)
+ ||X||H0

δ′
(M).

For every function u ∈ Hs
δ (M),

||u||Hs
δ (M) . ||∆u||Hs−2

δ−2 (M) + ||∂νu||
Hs− 3

2 (∂M)
+ ||u||H0

δ′
(M).
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4.4 Integration by Parts

For functions u and v in C∞
c (M) (noting that M includes its boundary), and smooth asymptotically

Euclidean metrics g, we have the formula
∫

M
〈∇u,∇v〉g dV = −

∫

M
u∆ v dV +

∫

∂M
u∂νv dA. (4.26)

That this formula also holds for asymptotically Euclidean metrics of class H s
ρ with s > n/2 and

ρ < 0 is clear from using an approximating sequence of smooth metrics. A little care is required,

however, to reduce the regularity of u and v and to remove the hypothesis of compact support.

Fixing u ∈ C∞
c (M), we first show that (4.26) holds for v ∈ H s

δ (M) for any s > 3/2 and δ ∈ R.

To see this, let {vk}
∞
k=1 be a sequence of functions in C∞

c (M) converging to v in Hs
δ . Then

∫

M
〈∇u,∇vk〉 dV = −

∫

M
u∆ vk dV +

∫

∂M
u∂νvk dA.

Now 〈∇u,∇vk〉g converges to 〈∇u,∇v〉g in L1(M) and, since s > 3/2, u∂νvk converges to u∂νv

in L1(∂M). If s ≥ 2, then u∆ vk converges to u∆ v in L1(M) as well, so this establishes integration

by parts for s ≥ 2. For the case 3/2 < s < 2 we only need to be careful about the term

−

∫

M
u∆ vk dV.

On a compact manifold with boundary N , Hσ(N) = H̊σ(N) for 0 ≤ σ < 1/2 (the upper limit 1/2

occurs since functions in Hσ with σ > 1/2 have trace values on the boundary). Using this fact in

boundary charts shows that Hσ
δ (M) = H̊σ

δ (M) for any δ ∈ R and σ ∈ [0, 1/2). Let σ = 2 − s, so

0 ≤ σ < 1/2. Then

∆ gvk ∈ Hs−2
δ−2 = H−σ

δ−2,

and

u ∈ C∞
c (M) ⊂ Hσ

2−n−δ(M) = H̊σ
2−n−δ(M).

Hence, ∫

M
u∆ gvk dVg = 〈∆ gvk, u〉(M,g)

where 〈·, ·〉(M,g) : H−σ
δ−2 × H̊σ

2−n−δ → R is the duality pairing from Lemma 3.10. From the

continuity of this bilinear form we find in the limit
∫

M
〈∇u,∇v〉g dV = −〈∆ v, u〉(M,g) +

∫

∂M
u∂νv dA. (4.27)
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for all v ∈ Hs
δ (M) and u ∈ C∞

c (M). From the continuity in u ∈ H1
2−n−δ(M) of each term in

(4.27) we obtain an integration by parts formula for v ∈ H s
δ (M) and u ∈ H1

2−n−δ(M). These argu-

ments extend in the same way to the familiar integration by parts formula for the vector Laplacian,

and we have the following.

Proposition 4.14 Suppose (Mn, g) is AE of class Hs
ρ with s > n/2 and ρ < 0. If u ∈ H1

δ1
and

v ∈ Hσ
δ2

with σ > 3/2 and δ1 + δ2 ≤ 2 − n, then

∫

M
〈∇u,∇v〉g dV = −〈∆ v, u〉(M,g) +

∫

∂M
u∂νv dA.

Similarly, if X ∈ H1
δ1

and Y ∈ Hσ
δ2

are vector fields we have

∫

M
〈LX, LY 〉g dV = −〈∆ � Y,X〉(M,g) +

∫

∂M
B � Y (ν,X) dA.

Our principal use of integration by parts is to show, for example, that the kernel of the Laplacian

on acting on Hs
δ (Rn) with δ < 0 is trivial. We then have if ∆u = 0 then

∫

M
〈∇u,∇u〉g dV = −〈∆u, u〉(M,g)

and hence u is constant so long as we can justify that in fact u ∈ H s
δ′ for some δ′ ≤ 2−n

2 . The

following Lemma, analogous to Proposition 3.1 of [CO81], provides this justification.

Lemma 4.15 Suppose A is an elliptic operator in L2,s
ρ on R

n with n ≥ 3, s > n/2 and ρ < 0.

If u ∈ Hs
δ (R

n) for some δ < 0 satisfies Au is compactly supported, then u ∈ H s
δ′(R

n) for all

δ′ ∈ (2 − n, 0).

Proof: Let A = A∞+R where A∞ is the homogeneous constant coefficient linear elliptic operator

giving the principal part of A at ∞. Then, since Au is compactly supported,

A∞u = Au − Ru ∈ Hs−m
δ−m+ρ.

Since A is an isomorphism acting on Hs
δ′ for each δ′ ∈ (m − n, 0), we conclude that u ∈ Hs

δ′ for

each δ′ ∈ (max(m − n, δ + ρ), 0). Iterating this argument yields the desired result. ut
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Chapter 5

TOOLS FOR THE CONFORMAL METHOD

In this chapter we establish three main tools for working with the constraint equations in our

applications. First, we show that we can always solve

∆ �
g W = −divg S

B � W = ω on ∂M

to obtain a transverse-traceless tensor σ = LW+S ∈ H s−1
δ−1 with desired properties on the boundary.

Second, we prove an existence theorem for the semilinear equation

−∆u = F (x, u)

∂νu = f(x, u). on ∂M
(5.1)

This will be our main tool for solving the Lichnerowicz equation. Finally, we establish some prop-

erties of metrics with λg > 0 that allow us to simplify our analysis of the Lichnerowicz equation.

A remark about manifold dimension is in order. Although we only solve the Lichnerowicz

equation on 3-manifolds, our results for the vector Laplacian and the conformal invariant λg are of

independent interest on general n-manifolds. This motivates us to work with n ≥ 3 where possible

(the case n = 2 is special and we do not treat it). For convenience, however, we restrict to n = 3 in

the existence theorem for equation (5.1); see also the remark following Proposition 5.9.

5.1 The Vector Laplacian

Let P � be the operator

P � : Hs
δ (M) → Hs−2

δ−2 ⊕ Hs− 3
2 (∂M)

X 7→ (∆ � X,B � X).

We wish to show that P � is an isomorphism acting on a suitable range of Sobolev spaces.
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Proposition 5.1 Suppose (Mn, g) is AE of class Hs
ρ with s > n/2 and ρ < 0. If δ ∈ (2 − n, 0)

then P � is Fredholm with index 0. Moreover, the kernel of P � is the set of conformal Killing fields

in Hs
δ (M).

Proof: The a-priori estimate from Proposition 4.13 shows that P � is semi-Fredholm. To show it

is Fredholm, we consider a sequence of smooth metrics {gk}
∞
k=1 such that g − gk → 0 in Hs

ρ(M).

The corresponding operators P �
k are well known to be Fredholm with index 0 and they converge as

operators to P � . The index of a semi-Fredholm operator is locally constant [Sc02] (that is, if L is

semi-Fredholm there exists a neighbourhood L in which every operator is semi-Fredholm and has

the same index as L). Hence the index of P � is 0. In particular, it is an isomorphism if and only if it

has trivial kernel. On the other hand, if X ∈ ker(∆ � , B � ) then Lemma 4.15 implies that X ∈ Hs
δ′

for every δ′ ∈ (2 − n, 0). In particular, we can pick δ ′ ≤ (2 − n)/2 and therefore integrate by parts

to obtain

0 = 〈−∆ � X,X〉g =

∫

M
|LX|2 dV −

∫

∂M
LX(ν,X) dA =

∫

M
|LX|2 dV.

So X is a conformal Killing field. ut

Proposition 5.1 shows that P � is an isomorphism if and only if (M, g) has no conformal Killing

fields vanishing at infinity. This fact is well known for classical metrics. It was proved in [CO81]

for C2 metrics and in particular for metrics of class H s
ρ where s > n/2 + 2. The level of regularity

required was reduced in [Ma03] to Hk
ρ where k is an integer and k > n/2 + 1. Moreover, it was

shown by means of a rescaling argument that if k > n/2, then any conformal Killing vanishing at

infinity must vanish identically outside a compact set. More recently, Bartnik has shown, as a special

case of [Ba04] Theorem 3.6, that when n = 3 there are no conformal Killing fields for metrics of

class H2
ρ . We now prove, augmenting the rescaling technique of [Ma03], that these results can be

extended to metrics of class Hs
ρ with s > n/2.

Although the method of proof is quite different from that in [CO81] and its generalization in

[Ba04], the spirit is the same. First, we show that if X is a conformal Killing field, then it vanishes

outside a compact set. Second, we show that the zero set extends to include the whole manifold.

Both cases rely on a rescaling argument to construct a conformal Killing field for the Euclidean

metric. The fact that the Euclidean metric has no conformal Killing fields vanishing at infinity will
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imply that X vanishes outside a compact set, and the fact that the Euclidean metric has no conformal

Killing fields Y such that Y (0) = 0 and ∇Y (0) = 0 will allow us to see that the 0 set of X extends

to all of M .

To make these arguments work, we need to know what happens when we rescale a metric in

from infinity or out from a point x0. The following Lemmas show that with suitable smoothness

and decay hypotheses we obtain in the limit the value of the metric at infinity or at x0, respectively.

Lemma 5.2 Suppose s ≥ 0 and δ ∈ R, and consider the family of operators Fr : Hs
δ (R

n) →

Hs
δ (E1) given by Fru = Sru|E1

. Then for r ≥ 1

||Fr||Hs
δ (

�
n) . rδ.

In particular, if δ < 0 and u ∈ Hs
δ , then Fru converges to 0 in Hs

δ (E1).

Proof: It is enough to consider the case s is an integer, since

||Fr||Hs
δ

.
(
||Fr||H[s]

δ

)1−(s−[s]) (
||Fr||H[s]+1

δ

)s−[s]
.

Let χ be a cutoff function equal to 1 on E1 and vanishing on B 1
2
, and define Mχ : Hs

δ (Rn) →

Hs
δ (R

n) by Mχu = χu. Then Fr = R ◦ Mχ ◦ Sr where R : Hs
δ (Rn) → Hs

δ (E1) is the restriction

map. Since R is continuous, it is enough to show

||Mχ ◦ Sr||Hs
δ (

�
n) . rδ.

Using the equivalent norm || · ||
W k,2

δ
on Hk

δ when k ≥ 0 is an integer we have

||MχSru||
2
Hk

δ (E1)
=

∑

|α|≤k

∫

E1

〈x〉−2δ−n+|α| |∂αSru|
2 dV +

+
∑

|α|≤k

∫

A1

〈x〉−2δ−n+|α| |∂αχSru|
2 dV

.
∑

|α|≤k

∫

E 1
2

〈x〉−2δ−n+|α| |∂αSru|
2 dV

=
∑

|α|≤k

∫

E 1
2

〈x〉−2δ−n+2|α| r|α| |Sr∂αu|2 dV

=
∑

|α|≤k

r2δ

∫

E r
2

〈x/r〉−2δ−n+2|α| r−2δ−n+|α| |∂αu|2 dV.
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But for fixed a and any x ≥ r/2 ≥ 1/2,

〈x/r〉a ra . 〈x〉a .

Hence

||MχSru||Hk
δ (

�
n) . rδ||u||Hk

δ (
�

n)

as claimed. ut

In fact, the previous lemma can also be proved without the restriction s ≥ 0; all that is required

is the decay condition δ < 0 to obtain a limit of 0 upon successive rescaling. By contrast, when we

blow up about a point there is no restriction on the decay, but there is a restriction on the regularity.

We require s > n/2.

Lemma 5.3 Suppose s > n/2 and suppose β ∈ (0, 1) satisfies β ≤ s − n/2. Consider the family

of operators Gr : Hs(B1(R
n)) → Hs(B1(R

n)) given by Gru(x) = u(rx) − u(0) for r ∈ (0, 1).

Then for every r ∈ (0, 1),

||Gr||Hs(B1) . rβ.

Proof: Let θ = s − [s] and let
1

q
=

1

2
+

1 − θ

n

1

p
=

1

2
−

θ

n
.

Then Hs(B1) = [W [s],p(B1),W
[s]+1,q(B1)]θ. Noting that

[s] −
n

p
= [s] + 1 −

n

q
= s −

n

2
,

from interpolation it is enough to prove that if k > n/p and if β ∈ (0, 1) satisfies β ≤ k−n/p, then

||Gr||W k,p(B1) . rβ

for r ∈ (0, 1).

We will use the equivalent norm on W k,p(B1)

||u||p
W̃ k,p(B1)

= ||u||pLp(B1) +
∑

|α|=k

||∂αu||pLp(B1).
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If n/p + 1 > k > n/p, then β = k − n/p and u is Hölder continuous with exponent β. So

sup
Br(0)

|u(x) − u(0)| . ||u||W̃ k,p(B1)r
β. (5.2)

On the other hand, if k > n/p+1, then u is Hölder continuous to every order and the estimate (5.2)

also holds. Hence

||Gru||
p
Lp(B1) =

∫
B1

|u(rx) − u(0)|p dV

= r−n
∫
Br

|u(x) − u(0)|p dV

. ||u||W̃ k,p(B1)r
pβ. (5.3)

On the other hand, if |α| = k then

||∂αGru||
p
Lp(B1) =

∫
B1

rkp|(∂αu)(rx)|p dV

= rkp−n
∫
Br

|(∂αu)|p dV

≤ rpβ
∫
Br

|(∂αu)|p dV . (5.4)

From (5.3) and (5.4) we obtain

||Gru||W̃ k,p(B1) . rβ||u||W̃ k,p(B1)

as claimed. ut

With Lemmas 5.2 and 5.3 in hand, we show using the a priori estimates of Chapter 4 that a

conformal Killing field decaying at infinity vanishes in a neighbourhood of infinity.

Lemma 5.4 Suppose (Mn, g) is AE of class Hs
ρ with s > n/2 and ρ < 0. If X ∈ Hs

δ with s > n/2

and δ < 0 is a conformal Killing field, then it vanishes outside some compact set.

Proof: We assume for simplicity that M has a single end. Working in end coordinates, we define a

sequence of metrics {gk}
∞
k=1 on the exterior region E1 via gk(x) = g(2kx). Since ρ < 0, it follows

from Lemma 5.2 that gk − g converges to 0 in Hs
ρ(E1). Hence the associated operators ∆k� , L

k, and

Bk converge to their Euclidean analogues as operators on H s
δ (E1).

Suppose, to produce a contradiction, that X is not identically 0 outside any exterior region ER.

Let X̂k(x) = X(2kx) and let Xk = X̂k/||X̂k||Hs
δ (E1). Since the sequence {Xk}

∞
k=0 is bounded in
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Hs
δ , we conclude after reducing to a subsequence that the sequence converges strongly in H s−1

δ′ for

any δ′ ∈ (δ, 0) to some vector field X0.

We can assume without loss of generality that δ ∈ (2 − n, 0). So from Proposition 4.13, the H s
δ

boundedness of the sequence {Xk}
∞
k=1, and the identities L

kXk = 0, it follows that

||Xk1 − Xk2 ||Hs
δ (E1) . ||∆ � − ∆k1� ||Hs

δ (E1) + ||∆ � − ∆k2� ||Hs
δ (E1) + ||B − Bk1 ||Hs

δ (E1)

+ ||B − Bk2 ||Hs
δ (E1) + ||Xk1 − Xk2 ||Hs−1

δ′
(E1).

We conclude {Xk}
∞
k=1 is Cauchy in Hs

δ (E1) and hence converges in Hs
δ to X0. Since ||Xk|| = 1,

X0 cannot be identically zero. Moreover, since Xk is a conformal Killing field for gk, it follows that

X0 is a conformal Killing field for g. But g does not admit any nontrivial conformal Killing fields

in Hs
δ , a contradiction. ut

Let U be the interior of the zero set of a conformal Killing field X . From Lemma 5.4 we know

that U is non-empty. We want to blow up the vector field about a point x0 ∈ ∂U to obtain a

conformal Killing field Y for the Euclidean metric that satisfies Y (0) = 0 and ∇Y (0) = 0. To

do this, we must choose the point x0 carefully. One could imagine, for example, that if x0 were a

cusp point for ∂U , then we would find Y (0) = 0 in the limit but we would have no control on ∇Y .

Fortunately, we can always find a suitable centre for rescaling.

Proposition 5.5 Suppose (Mn, g) is AE of class Hs
ρ with s > n/2 and ρ < 0. If X ∈ Hs

δ with

s > n/2 and δ < 0 is a conformal Killing field, then it vanishes identically.

Proof: As in the discussion above, let U be the interior of X−1(0), so U 6= ∅. To show that

U = int M , it is enough to show that it has empty boundary. Suppose, to produce a contradiction,

that x0 is a boundary point of U . Working in local coordinates about x0, we can assume M = R
n.

Hereafter, all balls and distances are computed with respect to the flat background metric. Let

y0 ∈ U and let r = d(y0, ∂U). Then Br(y0) ⊂ U , and there exists some point z0 ∈ Br(y0) ∩ ∂U .

After making an affine change of coordinates, we can assume z0 = 0 and g(0) = g.

We construct a sequence of metrics {gk}
∞
k=1 on the unit ball by taking gk(x) = g(2−kx). Since

s > n/2 and g(0) = g, it follows from Lemma 5.3 that gk − g converges to 0 in Hs(B1). It follows

that the associated maps ∆k� , L
k, and Bk converge to their Euclidean counterparts as operators on

Hs(B1).
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We construct vector fields Xk on B1 by setting X̂k(x) = X(2−kx) and letting

Xk = X̂k/||X̂k||Hs(B1)

This normalization is possible since X is not identically 0 on B2−k . Since the sequence is bounded

in Hs, we conclude that the sequence converges strongly in H s−1(B1) to some X0 ∈ Hs(B1).

Moreover, from the choice of the point z, it follows that Xk vanishes on an open cone K independent

of k.

Arguing as in Lemma 5.4, replacing the use of Proposition 4.13 with Proposition 4.12, we

conclude X0 is a conformal Killing field for g and Xk converges in Hs(B1) to X0. In particular,

X0 is a nontrivial conformal Killing field for g on B1 that vanishes on an open cone. But any such

conformal Killing field must vanish identically, a contradiction. ut

Combining Propositions 5.1 and 5.5 we immediately obtain

Theorem 5.6 Suppose (Mn, g) is AE of class Hs
ρ with s > n/2 and ρ < 0. If δ ∈ (2 − n, 0) then

P � : Hs
δ → Hs−2

δ−2 × Hs− 3
2 (∂M) is an isomorphism.

5.2 The Method of Sub- and Supersolutions

Our existence theorem for solutions of the Lichnerowicz equation relies on the well-known method

of sub and super-solutions. Versions of this technique have been used before to find solutions of

the Lichnerowicz equation for regular metrics, e.g. using the Leray-Schauder fixed point theorem

in [CB72] or via a constructive approach in [Is95]. The constructive method has subsequently been

extended to weaker classes of metrics [CB03][Ma03]. In this section we provide a version of the

barrier construction that accommodates both semilinear boundary conditions and rough metrics.

Consider the boundary value problem

−∆u = F (x, u)

∂νu = f(x, u) on ∂M
(5.5)

on an asymptotically Euclidean manifold. A subsolution of equation (5.5) is a function u− that

satisfies

−∆u− ≤ F (x, u−)

∂νu− ≤ f(x, u−) on ∂M
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and a supersolution u+ is defined similarly with the inequalities reversed. In Proposition 5.9 be-

low, we show that if there exists a subsolution u− and a supersolution u+ decaying at infinity and

satisfying u− ≤ u+, then there exists a solution u satisfying u− ≤ u ≤ u+.

The proof of Proposition 5.9 relies on properties of the associated linearized operator

−∆u + V u = F

∂νu + µu = f, on ∂M
(5.6)

where V , µ, F , and f are functions of x alone. We write PV,µ for the operator (−∆ + V, ∂ν + µ |∂M )

mapping Hs
δ (M) to Hs−2

δ−2 (M) × Hs− 3
2 (∂M).

Proposition 5.7 Suppose (Mn, g) is AE of class Hs
ρ with s > n/2 and ρ < 0. Suppose also

that V ∈ Hs−2
ρ−2(M) and µ ∈ Hs− 3

2 (∂M). Then for δ ∈ (2 − n, 0), PV,µ mapping Hs
δ (M) to

Hs−2
δ−2 (M) × Hs− 3

2 (∂M) is Fredholm with index 0. Moreover, if V ≥ 0 and µ ≥ 0, then PV,µ is an

isomorphism.

Proof: When V = 0 and µ = 0, the proof that P0,0 is Fredholm with index 0 proceeds exactly as

in Proposition 5.1. On the other hand, PV,µ is a compact perturbation of P0,0 and hence also has

index 0. The follow maximum principle proves that when V ≥ 0 and µ ≥ 0, then kerPV,µ = 0 and

hence PV,µ is an isomorphism. ut

We recall that if V ∈ Hs−2
δ−2 , we say that V ≥ 0 if 〈V, φ〉(g,M) ≥ 0 for every non-negative,

smooth, compactly supported function φ. From a density argument, this is equivalent to the same

condition holding for φ ∈ H2−s
2−n−δ. With this definition in mind, we have the following weak

maximum principle.

Lemma 5.8 Suppose (Mn, g) is AE of class Hs
ρ with s > n/2 and ρ < 0. Suppose also that

V ∈ Hs−2
ρ−2(M), µ ∈ Hs− 3

2 (∂M), and V ≥ 0 and µ ≥ 0. If u ∈ Hs
loc satisfies

−∆u + V u ≤ 0

∂νu + µu ≤ 0
(5.7)

and if u(+) = max(u, 0) is o(1) on each end of M , then u ≤ 0. In particular, if u ∈ H s
δ (M) for

some δ < 0 and u satisfies (5.7), then u ≤ 0.
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Proof: Fix ε > 0, and let v = (u − ε)(+). Since u(+) = o(1) on each end, we see v is compactly

supported. Since u ∈ H1
loc, v ∈ H1

loc also. Since u ∈ Hs
loc with s > n/2, and since v is compactly

supported, we conclude uv ∈ H1(M) and uv ≥ 0. Since V ∈ Hs−2
loc (M), and since s − 2 ≥ −1

we can apply V to uv. Since u satisfies (5.7) we obtain

−〈∆u, v〉(M,g) ≤ 〈V, uv〉 ≤ 0.

Integrating by parts and using (5.7) again we find
∫

M
〈∇u,∇v〉g dV ≤

∫

∂M
∂νuv dA

≤ −

∫

∂M
µuv dA

≤ 0.

Now ∇v = ∇(u − ε)(+) = ∇u wherever u > ε, and ∇v vanishes otherwise (see, e.g. [GT99]

Lemma 7.6). Hence 〈∇u,∇v〉g = 〈∇v,∇v〉g. We conclude

∫

M
|∇v|2 dV ≤ 0.

So v is constant and compactly supported. We conclude u ≤ ε on M , and taking ε to 0 proves

u ≤ 0. ut

We now turn to the existence proof for the nonlinear problem

−∆u = F (x, u)

∂νu = f(x, u) on ∂M.
(5.8)

We assume for simplicity that the nonlinearities F and f have the form

F (x, y) =
l∑

j=1

Fj(x)Gj(y)

f(x, y) =

m∑

j=1

fj(x)gj(y).

Proposition 5.9 Suppose

1. (M3, g) is AE of class Hs
ρ with s > 3/2 and ρ < 0,
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2. u−, u+ ∈ Hs
δ with and δ ∈ (2 − n, 0) are a subsolution and a supersolution respectively of

(5.8) such that u− ≤ u+,

3. each Fj ∈ Hs−2
δ−2 (M) and fj ∈ W s− 3

2
,(∂M) are non-negative,

4. each Gj and gj are smooth on I = [inf(u−), sup(u+)].

Then there exists a solution u of (5.8) such that u− ≤ u ≤ u+.

Proof: We first assume 3/2 < s ≤ 2. Let

V (x) =
l∑

j=1

Fj(x)

∣∣∣∣min
I

G′
j

∣∣∣∣

µ(x) =

m∑

j=1

fj(x)

∣∣∣∣min
I

g′j

∣∣∣∣ ,

so that V ∈ Hs−2
δ−2 (M), µ ∈ Hs− 3

2 (∂M), and both are nonnegative. Let FV (x, y) = F (x, y) +

V (x)y and fµ(x, y) = f(x, y) + µ(x)y so that FV and fµ are both non-decreasing in y. By this

we mean that if u, v ∈ Hs
δ (Ω) satisfy u ≥ v, then FV (x, u) − FV (x, v) ≥ 0 as a distribution.

Let LV = −∆ + V , and let Bµ = (∂ν + µ) |∂M . From Proposition 5.7 we have (LV , Bµ) is an

isomorphism acting on Hs
δ .

We construct a sequence of functions as follows. Let u0 = u+, and for i ≥ 1 let ui be the

solution of

LV ui+1 = FV (x, ui)

Bµ ui+1 = fµ(x, ui).

Now

LV (u1 − u0) ≤ FV (x, u0) − F (x, u0) − V (x)u0 = 0

Bµ(u1 − u0) ≤ fµ(x, u0) − f(x, u0) − µ(x)u0 = 0

since u0 is a super-solution. Moreover,

LV (u1 − u−) ≥ FV (x, u+) − FV (x, u−) ≥ 0

Bµ(u1 − u−) ≥ fµ(x, u+) − fµ(x, u−) ≥ 0
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since u+ ≥ u−. From Lemma 5.8 we conclude u0 ≥ u1 ≥ u−. Now suppose u0 ≥ u1 ≥ · · · ≥

ui ≥ u−. Then

LV (ui+1 − ui) = FV (x, ui) − F (x, ui−1) ≤ 0

Bµ(ui+1 − ui) = fµ(x, ui) − f(x, ui−1) ≤ 0

Hence ui+1 ≤ ui. Also,

LV (ui+1 − u−) = FV (x, ui) − F (x, u−) ≥ 0

Bµ(ui+1 − u−) = fµ(x, ui) − f(x, u−) ≥ 0.

So ui ≥ ui+1 ≥ u−. We obtain by induction for the entire sequence u+ = u0 ≥ u1 ≥ u2 ≥ · · · ≥

u−.

We claim the sequence {ui}
∞
i=1 is bounded in Hs

δ (M). From Proposition 5.7 we can estimate

||ui+1||Hs(M) . ||FV (x, ui)||Hs−2(M) + ||fµ(x, ui)||
Hs− 3

2
. (5.9)

We turn to estimating each term on the right-hand side of (5.9). FV (x, ui) is a sum of terms of the

form

F (x)G(ui)

where F ∈ Hs−2
δ−2 (M). From Lemma 5.10 proved below we have

||F (x)G(ui)||Hs−2
δ−2

. ||F ||Hs−2
δ−2

[
||G(ui)||L∞ + ||G′(ui)||L∞ ||u||

Hs′
δ

]

for fixed s′ ∈ (n/2, s). Since u− ≤ ui ≤ u+, we have uniform estimates for each of the terms

||G(ui)||L∞ and ||G′(ui)||L∞ . Hence

||FV (x, ui)||Hs−2
δ−2 (M) . 1 + ||u||Hs′

δ (M). (5.10)

Turning to estimates for fµ(x, ui) we have a sum of terms of the form

f(x)g(ui)

where f ∈ Hs− 3
2 (∂M). Since s − 3

2 ∈ [−1, 1] we find from Lemma 5.11 below that

||f(x)g(ui)||
Hs− 3

2 (∂M)
. ||f ||

Hs− 3
2 (∂M)

[
||g(ui)||L∞(∂M) + ||g′(ui)||L∞(∂M)||u||Hs′− 1

2 (∂M)

]
.



71

Again we have uniform estimates for ||g(ui)||L∞(∂M) and ||g′(ui)||L∞(∂M). From the trace theorem

we have

||u||
Hs′− 1

2 (∂M)
. ||u||

Hs′
δ (M)

and therefore

||fµ(x, ui)||
Hs− 3

2
. 1 + ||ui||Hs′

δ (M)
. (5.11)

Now from interpolation we know that for any ε > 0 there is a constant C(ε) such that

||u||Hs′
δ

≤ C(ε)||u||H0
δ

+ ε||u||Hs
δ

(5.12)

Again, since u− ≤ ui ≤ u+, we have uniform estimates for ||u||H0
δ
. Combining (5.9), (5.10), (5.11)

and (5.12) we obtain, taking ε sufficiently small,

||ui+1||Hs
δ (M) ≤

1

2
||ui||Hs

δ (M) + C

for some constant C independent of i. Iterating this inequality we obtain a bound for all i

||ui||Hs
δ (M) ≤ ||u+||Hs

δ (M) + 2C.

Hence some subsequence of {ui}
∞
i=1 (and by monotonicity, the whole sequence) converges weakly

in Hs
δ (M) to a limit u∞.

It remains to see u∞ is a solution of (5.8). Now ui converges strongly to u∞ in Hs′

δ′ for any

s′ < s and δ′ > δ, and also converges uniformly on compact sets. Hence for any φ ∈ C∞
c (M),

∫

M
(FV (x, ui) − V (x)ui+1)φ dV →

∫

M
F (x, u∞)φ dV

∫

∂M
(fµ(x, ui) − µ(x)ui+1)φ dA →

∫

∂M
f(x, u∞)φ dA

∫

M
〈∇ui+1,∇φ〉φ dV →

∫

M
〈∇u∞,∇φ〉 dV.

So ∫

M
〈∇u∞,∇φ〉 dV =

∫

M
F (x, u∞)φ dV +

∫

∂M
f(x, u∞)φ dA,

and an application of integration by parts shows u∞ solves the boundary value problem.

To handle the case s > 2 we use a bootstrap. First suppose 4 ≥ s ≥ 2. From the above we have

a solution u in H2
δ . Since 2 > n/2 = 3/2 and since 2 > s − 2 ∈ [0, 2], we know from Lemma 3.6

and the remark following it that c(x)f(u) ∈ H s−2
δ−2 . Since −∆u ∈ Hs−2

δ−2 , Proposition 5.7 implies

u ∈ Hs
δ . We obtain the result for all s > 3/2 by induction. ut
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Remark 2 The restriction n = 3 in Proposition 5.9 is a consequence of our choice to work with the

spaces Hs
δ . It arises since H2

δ is an algebra for n = 3, but not for n > 3. This is not a fundamental

restriction. We showed in [Ma03] that a similar proposition can be proved for the Sobolev spaces

W k,p
δ where k ≥ 2 and k > n/p. Every AE metric of class H s

δ with s > n/2 and n > 3 is also

of class W
[s],p
δ where [s] > 2 and where p satisfies [s] > n/p. So we can find a solution in W

[s],p
δ ,

and in fact we can bootstrap from here to H s
δ . For details, see [Ma04]. Since we have chosen to

present here the linear theory the spaces H s
δ only, rather than that for the spaces W k,p

δ , we restrict

our attention to 3-manifolds.

The following two lemmas complete the proof of Proposition 5.9.

Lemma 5.10 Suppose (Mn, g) is an AE manifold of class Hs
ρ with s > n/2 and ρ < 0. Suppose

F is a smooth function, δ ∈ R, σ ∈ [−1, 1], and s′ ∈ (n/2, s). Then for every u ∈ Hs
ρ and v ∈ Hσ

δ

we have

||vf(u)||Hσ
δ (M) . ||v||Hσ

δ

[
||f(u)||L∞(M) + ||f ′(u)||L∞(M)||u||Hs′

ρ (M)

]
.

Proof: If σ = 1, then

||vf(u)||H1
δ (M) . ||vf(u)||L2

δ(M) + ||∇(vf(u))||L2
δ−1(M)

. ||vf(u)||L2
δ(M) + ||∇vf(u)||L2

δ−1(M) + ||vf ′(u)∇u||L2
δ−1(M)

. ||v||H1
δ (M)||f(u)||L∞(M) + ||vf ′(u)∇u||L2

δ−1(M).

To estimate the last term we note that since v ∈ H 1
δ , it is also in Lp

δ where

1

p
=

1

2
−

1

n
.

On the other hand, ∇u ∈ Lq
ρ−1 where

1

q
=

1

2
−

s′ − 1

n
.

Since
1

p
+

1

q
=

1

2
−

1

n
+

1

2
−

s′ − 1

n

=
1

2
+

(
1

2
−

s′

n

)

<
1

2
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we conclude

||vf ′(u)∇u||L2
δ−1(M) . ||v||H1

δ
||f ′(u)||L∞(M)||u||Hs′

ρ
. (5.13)

This proves the result in the case s = 1.

We prove the case s = −1 by duality. If w ∈ H1
−n−δ(M), then

∣∣∣〈vf(u), w〉(M,g)

∣∣∣ . ||v||H−1
δ

||f(u)w||H1
−n−δ(M)

. ||v||H−1
δ

[
||f(u)||L∞(M) + ||f ′(u)||L∞(M)||u||Hs′

ρ (M)

]
||w||H1

−n−δ (M).

Hence

||vf(u)||H−s
δ

. ||v||H−1
δ

[
||f(u)||L∞(M) + ||f ′(u)||L∞(M)||u||Hs′

ρ (M)

]
.

We have therefore obtained the result for s = −1, and the result for all s ∈ [−1, 1] now follows

from interpolation. ut

The corresponding fact for compact manifolds is proved identically. We omit the proof.

Lemma 5.11 Suppose (Mn, g) is a compact Riemannian manifold of class H s with s > n/2.

Suppose F is a smooth function, σ ∈ [−1, 1], and σ ′ ∈ (n/2, s). Then for every u ∈ Hs(M) and

v ∈ Hσ(M) we have

||vf(u)||Hσ
δ (M) . ||v||Hσ

δ

[
||f(u)||L∞(M) + ||f ′(u)||L∞(M)||u||Hs′

ρ (M)

]
.

5.3 Conformal Transformations of Asymptotically Euclidean Manifolds

On a compact Riemannian manifold (Mn, g) without boundary, the Yamabe invariant λg is defined

by

λg = inf
f∈C∞(M),f 6≡0

∫
M a |∇f |2 + Rf2 dV

||f ||L2∗

where a = 4(n−1)
n−2 and where 2∗ is the critical Sobolev exponent 2n

n−2 . There is a well known rela-

tionship between the Yamabe invariant, a geometric condition on (M, g), and an analytic condition

on (M, g). Namely, the following are equivalent.

1. There is a metric g̃ ∈ [g] with scalar curvature everywhere positive (resp. negative, zero).

2. The Yamabe invariant λg is positive (resp. negative, zero).
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3. The first non-zero eigenvalue of −a∆g + R is positive (resp. negative, zero).

In [Es92], Escobar extended the notion of Yamabe invariant to compact manifolds with bound-

ary. Following this, [Ma03] made the natural extension of this definition to asymptotically Euclidean

manifolds with boundary,

λg = inf
f∈C∞

c (M),f 6≡0

∫
M a |∇f |2 + Rf2 dV +

∫
∂M 2Hf2 dA

||f ||2
L2∗

.

For rough metrics, by
∫
M Rf2 dV we mean

〈
R, f2

〉
(M,g)

. There will be no confusion on this point

in practice, so we keep the more suggestive notation.

We want show that the condition λg > 0 is equivalent to a geometric condition and an analytic

condition. Since the conformal Laplacian does not have eigenfunctions that vanish at infinity, the

analytic condition cannot be expressed in terms of an eigenvalue. To state it, we consider instead

the family of operators

Pη =
(
−a∆ + ηR,

a

2
∂ν + ηH

∣∣∣
∂M

)
.

When η = 1, This is related to the conformal change of scalar curvature and boundary mean curva-

ture. If g̃ = φ2κg, where κ = 2
n−2 , then

Rg̃ = φ−2κ−1 (−a∆ gφ + Rgφ)

Hg̃ = φ−κ−1
(a

2
∂νgφ + Hgφ

)
.

Proposition 5.12 Suppose (Mn, g) is AE of class Hs
δ with s > n/2, and δ ∈ (2 − n, 0). Then the

following conditions are equivalent:

1. There exists a conformal factor φ > 0 such that 1 − φ ∈ H s
δ (M) and such that (M,φ

4
n−2 g)

is scalar flat and ∂M is a minimal surface.

2. λg > 0.

3. For each η ∈ [0, 1], Pη is an isomorphism acting on Hs
δ (M).

Proof: Suppose condition 1 holds. Since λg is a conformal invariant, we can assume that R = 0

and H = 0. By solving the equation

−a∆ v = R

a

2
∂νv = 0

(5.14)
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for some smooth positive R ∈ Hs−2
δ−2 , we can make the conformal change corresponding to φ = 1+v

to a metric with continuous positive scalar curvature R and a minimal surface boundary. Let K be

the compact core of M . Since

||f ||2
L2∗ . ||∇f ||2L2 + ||f ||2L2(K), (5.15)

we find

||f ||2
L2∗ . ||∇f ||2L2 + ||R1/2f ||2L2 .

Hence λg > 0.

Now suppose condition 2 holds. To show condition 3 is true, it is enough to show each Pη

has trivial kernel for each η ∈ [0, 1]. When η = 0 the result is obvious, so we consider the case

η ∈ (0, 1]. Suppose, to produce a contradiction, that Pηu = 0. From Lemma 4.15 we have u ∈ Hs
δ′

for any δ′ ∈ (2 − n, 0). Fixing δ′ ≤ (2 − n)/2 we can integrate by parts to obtain

0 =

∫

M
−au∆u + ηRu2 dV =

∫

M
a |∇u|2 + ηRu2 dV −

∫

∂M
a∂νuu dA

=

∫

M
a |∇u|2 + ηRu2 dV + η

∫

∂M
2Hu2 dA

≥ η

(∫

M
a |∇u|2 + Ru2 dV +

∫

∂M
2Hu2 dA

)
(5.16)

Since η > 0,

0 ≥

∫

M
a |∇u|2 + Ru2 dV +

∫

∂M
2Hu2 dA.

Let uk be a sequence of functions in C∞
c (M) converging in Hs

δ′(M) to u. The map taking uk to

∫

M
a |∇uk|

2 + Ru2
k dV +

∫

∂M
2Hu2

k dA.

is continuous on Hs
δ′(M). Moreover, from (5.15) and the inequality δ ′ ≤ (2 − n)/2 we have the

continuous embeddings Hs
δ′ → H1

δ′ → L2∗ . It follows that ||uk||L2∗ converges to ||u||L2∗ 6= 0.

Hence

λg ≤ lim
k→∞

∫
M a |∇uk|

2 + Ru2
k dV +

∫
∂M 2Hu2

k dA

||uk||
2
L2∗

=

∫
M a |∇u|2 + Ru2 dV +

∫
∂M 2Hu2 dA

||u||2
L2∗

≤ 0.
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But λg > 0 by hypothesis, so we have a contradiction.

Finally, suppose condition 3 holds. For each η ∈ [0, 1], let vη be the unique solution in Hs
δ of

Pηvη = −η(R,H).

Letting φη = 1 + vη we see

−a∆φη + ηRφη = 0

a

2
∂νφη + ηHφη = 0.

(5.17)

To show φη > 0 for all η ∈ [0, 1], we use a continuity argument. Let I = {η ∈ [0, 1] : φη > 0}.

Since v0 = 0, we have I is nonempty. Moreover, the set {v ∈ C 0
δ : v > −1} is open in C0

δ . Since

the map taking η to vη ∈ C0
δ is continuous, I is open. It suffices to show that I is closed. Suppose

η0 ∈ Ī . Then φη0 ≥ 0. Since φη solves (5.17), and since φη0 tends to 1 at infinity, Lemma 5.14

proved below implies φη0 > 0. Hence η0 ∈ I and I is closed.

Letting φ = φ1 we have shown φ > 0. Since φ solves (5.17) with η = 1 it follows that

(M,φ2κg) is scalar flat and has a minimal surface boundary. Moreover, since φ− 1 ∈ H s
δ it follows

from Lemma 3.6 and Corollary 3.7 that (M,φ
4

n−2 g) is also AE of class Hs
δ . ut

To complete the proof of Proposition 5.12 we need to prove a kind of strong maximum principle

for rough metrics. We recall that we had constructed a non-negative function φ that satisfied an

elliptic PDE, and we needed to verify that φ vanished nowhere. The main tool we will use to prove

this is the weak Harnack inequality of [Tr73] Theorem 5.2, which applies to second order elliptic

operators of the form

L u = ∂i

(
−aij∂ju + aiu

)
+ bj∂ju + au.

The theorem applies under quite general conditions, and certainly holds when aij is a continuous

positive definite symmetric matrix, ai ∈ Lp
loc, bj ∈ Lp

loc, and a ∈ L
p/2
loc for some p > n. In this case,

the weak Harnack inequality states that if u ∈ H 1 satisfies u ≥ 0 and Lu ≥ 0 on B5R(x), then

||u||Lp(B2R(x)) ≤ c inf
BR(x)

u

where p and c are constants independent of u. In particular, if u(x0) = 0, then u vanishes in a

neighbourhood of x0. If u is continuous and M is connected, as it will be in our applications, we

obtain as a consequence that either u is identically zero or it vanishes nowhere.
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Now the operator −∆ + V for a metric g ∈ Hs
loc and a potential V ∈ Hs−2

loc can be written in

the form

∂i

(
−aij∂ju

)
+ bj∂ju + au

where aij ∈ Hs
loc, bj ∈ Hs−1

loc and a ∈ Hs−2
loc . If s > n/2 we have from Sobolev embedding

aij ∈ C0

bj ∈ Lp
loc

where
1

p
=

1

2
−

s − 1

n
<

1

n

since s > n/2. If we also have s ≥ 2, then

a ∈ Lq
loc

where
1

q
=

1

2
−

s − 2

n
<

2

n
.

So if s > n/2 and s ≥ 2, the weak Harnack inequality can be applied to the operator −∆ + V ,

at least in the interior of M . In particular s ≥ 2 when n > 3. So it remains to show that we have

a weak Harnack inequality when n = 3 and in the presence of a boundary. It turns out that both of

these cases can be reduced to a situation where the weak Harnack inequality of [Tr73] does apply.

Lemma 5.13 Suppose (Mn, g) is AE of class Hs
ρ with s > n/2 and ρ < 0, V ∈ Hs−2

ρ−2(M), and

µ ∈ Hs− 3
2 (∂M). Suppose also that u ∈ Hs

loc(M) is nonnegative and satisfies

−∆u + V u ≥ 0

in the interior of M . If u = 0 at an interior point of M , then u is identically 0.

Proof: Since u is continuous and M is connected, it is enough to show that the set int M ∩u−1(0)

is open. Suppose x0 is an interior point and u(x0) = 0. Working in local coordinates about x0, we

know from the discussion above that −∆ + V can be written in the form

− L u = ∂i

(
−aij∂ju + aiu

)
+ bj∂ju + au.
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where all the coefficients satisfy the conditions of the weak Harnack inequality of [Tr73] except

possibly the low order term a which belongs to H s−2
loc . If s > 2 then a ∈ L

p/2
loc where

1

p
=

1

2
−

s − 2

n
<

2

n

and hence the low order coefficient also has the correct regularity. So we are only left to consider

the case n = 3 and 3/2 < s < 2. Let ΦHs
loc be a solution of

∆Φ = V

in a neighbourhood of x0. Here ∆ is the Laplacian computed with respect to the flat background

metric. It follows that

au = ∂j(δ
ij∂iΦu) − δij∂iΦ∂ju.

Now ∂iΦ ∈ Hs−1
loc , and Hs−1

loc ⊂ Lp
loc where

1

p
≥

1

2
−

s − 1

3
<

1

3
.

So u is a weak supersolution of the operator

L u = ∂i

(
−aij∂ju + aiu

)
+ bj∂ju∂j(δ

ij∂iΦu) − δij∂iΦ∂ju

in a neighbourhood of x0. All the coefficients of this operator satisfy the hypotheses of the weak

Harnack inequality. Since u ≥ 0 and since u(x) = 0, the weak Harnack inequality implies u

vanishes in a neighbourhood of x0. ut

Lemma 5.14 Suppose (Mn, g) is AE of class Hs
ρ with s > n/2 and ρ < 0, V ∈ Hs−2

ρ−2(M), and

µ ∈ Hs− 3
2 (∂M). Suppose also that u ∈ Hs

loc(M) is nonnegative and satisfies

−∆u + V u ≥ 0

∂νu + µu ≥ 0 on ∂M.

If u(x0) = 0 at some point x0 ∈ M , then u vanishes identically.

Proof: From Lemma 5.13 we need only consider the case x0 ∈ ∂M . Working in local coordinates

about x0 we can do our analysis on B+
1 (0) ≡ B1(0) ∩ R

n
+, where balls are now taken with respect
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to the flat background metric. Let b be a H s−1(B+
1 ) vector field such that 〈b, ν〉 = µ on D1, where

we set D1 = ∂B+
1 ∩ B1. For example, since µ ∈ Hs− 3

2 (∂M) and g ∈ Hs
loc, we can take b = µ̂ν̂

where µ̂ is a Hs−1 extension of µ and ν̂ is a Hs extension of ν. Integrating by parts, we have for

any φ ∈ C∞
c (B+

1 ∪ D1)

∫

B+
1

〈∇φ, b〉 u + 〈b,∇u〉φ dV + 〈div b, uφ〉(B+
1 ,g) =

∫

D1

µuφ dA.

In particular, if φ ≥ 0,

∫

B+
1

〈∇u,∇φ〉g + V uφ +

+ 〈∇φ, b〉 u + uφ div b + 〈b,∇u〉φ dV =
∫
B+

1
−φ∆u + V uφ dV +

+
∫
D1

∂νuφ + µφu dA

≥ 0, (5.18)

since u is a supersolution (noting that we have slightly abused notation in (5.18) since the terms

involving V , div b, and ∆u are pairings of distributions, not integrals).

To reduce to the interior case, we now construct an elliptic equation on all of B1. For any

function or tensor f defined on B+
1 (0), let f̃ be the extension of f to B1 via its push-forward under

reflection. These extensions have some limited regularity. In particular, setting

1

p
=

1

2
−

s − 1

n
>

1

n

we have g ∈ W 1,p(B+
1 ), u ∈ W 1,p(B+

1 ) and b ∈ Lp(B+
1 ). So the reflections satisfy g̃ ∈ W 1,p(B1),

ũ ∈ W 1,p(B1) and b̃ ∈ Lp(B1). We have to be careful with the low order terms V and div b,

however, since these only belong to Hs−2(B+
1 ). If s > 2, then these terms are in Lp/2 and so

are their reflections. On the other hand, if n = 3 and s ∈ (3/2, 2], then s − 2 ∈ (−1/2, 0]. But

from Lemma 5.15 we find reflection takes H s−2(B+
1 ) to Hs−2(B1) for s − 2 ∈ (−1/2, 0]. Setting

V ′ = Ṽ + d̃ivb we have V ′ ∈ Hs−2(B1) and we obtain from (5.18) and a change of variables

argument that ∫

B1

〈∇ũ,∇φ〉g̃ + V ′ũφ + 〈∇φ, b̃〉g̃ ũ + 〈b̃,∇ũ〉g̃φ d̃V ≥ 0 (5.19)

for all φ ∈ C∞
0 (B1) with φ ≥ 0. Hence ũ is a weak supersolution of an operator with coefficients

having the regularity required by by [Tr73] except possibly V ′. But since V ′ ∈ Hs−2(B1) we can
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argue as before in Lemma 5.13 to convert these terms as well. Since ũ(0) = 0 we obtain that ũ

vanishes in a neighbourhood of 0 and hence u does also. In particular u vanishes in an interior point

of M and Lemma 5.13 implies u vanishes identically. ut

Lemma 5.15 Suppose u ∈ Hσ(B+
1 ) with σ ∈ (− 1

2 , 1
2), and let ũ be the even reflection of u to B1.

Then u ∈ Hs(B1).

Proof: Since B+
1 is Lipschitz and since σ ∈ (− 1

2 , 1
2), extension by zero is continuous from

Hσ(B+
1 ) to Hσ(Rn). Letting E0 be the extension operator and R be the reflection diffeomorphism

about the surface xn = 0, we have

E0u + R∗E0u ∈ Hσ(Rn).

But ũ is just the restriction of E0u + R∗E0u to B1. ut
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Chapter 6

APPLICATIONS

6.1 Apparent Horizon Boundary Condition

In Chapter 2 we say CMC conformal method for the apparent horizon boundary problem reduces to

solving

−8∆φ − |σ|2 φ−7 = 0

4∂νφ + Hφ − σ(ν, ν)φ−3 = 0 on ∂M
(6.1)

where σ is a transverse-traceless tensor. We now prove that this equation is solvable so long as

1. (M, g) satisfies λg > 0, R = 0 and H < 0,

2. σ satisfies H ≤ σ(ν, ν) ≤ 0.

Theorem 6.1 Suppose (M 3, g) is AE of class Hs
δ with s > 3/2 and δ ∈ (−1, 0). Suppose also

that λg > 0, R = 0, and H ≤ 0. If σ ∈ Hs−1
δ−1 is a transverse traceless tensor on M such that

H ≤ σ(ν, ν) ≤ 0 on ∂M , then there exists a conformal factor φ solving (6.1). Setting ĝ = φ4g and

K̂ = φ−2σ, we have (M, g̃, K̃) is an AE solution of the constraint equations of class H s
δ such that

∂M is an apparent horizon and a marginally trapped surface.

Proof: Let φ = 1 + v, so the Lichnerowicz equation reduces to solving

−∆ v =
1

8
|σ|2 (1 + v)−7

∂νv = −
1

4
H(1 + v) +

1

4
σ(ν, ν)(1 + v)−3 on ∂M

(6.2)

with the constraint v > −1. We solve this by means of Proposition 5.9. Since H ≤ σ(ν, ν), we

conclude − 1
4H + 1

4σ(ν, ν) ≥ 0. Therefore v− = 0 is a subsolution of (6.2). To find a supersolution,

we solve for each η ∈ [0, 1]

−∆ vη =
1

8
|σ|2

∂νvη +
η

4
Hvη = −

η

4
H.

(6.3)
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The solution exists since λg > 0. We claim moreover that φη = 1 + vη > 0. Let I = {η ∈

[0, 1] : φη > 0}. Arguing as in Proposition 5.12, using the fact that |σ|2 ≥ 0, we see I is open and

nonempty. Suppose η0 ∈ Ī . Then φη0 ≥ 0. Since φη is a supersolution of

−∆ vη = 0

∂νvη +
η

4
Hvη = 0,

and since φη0 tends to 1 at infinity, Lemma 5.14 then implies φη0 > 0. Hence η0 ∈ I and I is closed.

Let v+ = v1. We have proved 1 + v+ > 0. But then, since

−∆ v+ =
1

8
|σ|2

∂νv+ = −
1

4
H(1 + v+),

(6.4)

and since −H ≥ 0, 1 + v1 ≥ 0 and |σ|2 ≥ 0, we conclude that v+ ≥ 0. It follows that

−∆ v+ =
1

8
|σ|2 ≥

1

8
|σ|2 (1 + v+)−7.

Moreover, since σ(ν, ν) ≤ 0, we have

∂νv+ = −
1

4
H(1 + v+) ≥ −

1

4
H(1 + v+) +

1

4
σ(ν, ν)(1 + v+)−3 on ∂M.

So v+ is a nonnegative supersolution of (6.2).

Now v−, v+, (M, g), and the right hand sides of (6.2) all satisfy the hypotheses of Proposition

5.9. So there exists a nonnegative solution v of (6.2) in H s
δ . Letting g̃ = φ4g and K̃ = φ−2σ, it

follows from Lemma 3.6 and Corollary 3.7 that (M, g̃) is AE of class H s
δ and K̃ ∈ Hs−1

δ−1 . We also

have (M, ĝ, K̂) solves the constraint equations with apparent horizon boundary condition. To see

that the boundary is marginally trapped, we note that

H̃ = K̃(ν̃, ν̃) = φ−6σ(ν, ν) ≤ 0.

Since θ̃− = θ̃+ + 4h̃, we conclude θ̃− ≤ θ̃+ = 0, and ∂M is marginally trapped. ut

6.1.1 Suitable Conformal Data

It is reasonable to ask if any conformal data (M, g, σ) satisfy the hypotheses of Theorem 6.1. We

show here that there is, in fact, a large class of suitable conformal data.
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Manifolds of the Correct Conformal Class

Suppose we have a smooth, asymptotically Euclidean manifold without boundary (M ′, g′) such that

λg′ > 0. Examples of this include R
n with the flat metric or any maximal asymptotically Euclidean

solution of the constraint equations. From Proposition 5.12 we can assume that R ′ = 0. Let G be

the Greens function for the conformal Laplacian on M ′ with singularity at x. It is well known that

when λg > 0, the Greens function for the conformal Laplacian is positive, has a singularity of order

r−1, and decays at infinity like r−1.

Let φ = 1 + G and let g = φ4g′ on M = M ′ − Bε(X). We wish to show that if ε is small

enough, then H > 0. Now G = r−1 +O(1) and H ′ = −2r−1 +O(1). From the conformal change

of mean curvature we have

H = φ−3

(
−4∂rr

−1 − 2r−1 1

r
+ O(r−1)

)∣∣∣∣
r=ε

= φ−3
∣∣
r=ε

(
2ε−2 + O(ε−1)

)

> 0

for ε sufficiently small. Repeating this argument (augmenting it in the obvious way to accommodate

the boundary) we can remove another small ball from this manifold, and so on to create as many

boundary components as we please. Hence there is a rich collection of manifolds with λg > 0.

Gauge Transformation

The condition R = 0 and H ≤ 0 in Theorem 6.1 is not an actual restriction on the choice of

metric (whereas λg > 0 certainly is). To see this, we show that every metric with λg > 0 is

conformally related to scalar flat metric with negative boundary mean curvature. This fact is related

to an observation from [CaB81] for manifolds without boundary that if (M, g) has λg > 0, then it is

conformally equivalent to a metric with everywhere positive scalar curvature, everywhere negative

scalar curvature, and to a scalar flat metric. This last result is perhaps surprising since the condition

λg > 0 on a compact manifold without boundary would preclude a change to a manifold with

everywhere negative scalar curvature. The asymptotically Euclidean end allows for the greater

flexibility.
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Proposition 6.2 Suppose (M 3, g′) is AE of class Hs
δ , s > 3/2 and −1 < δ < 0. If λg′ > 0, then

there exists a conformal factor φ > 0 such that φ − 1 ∈ H s
δ and such that (M, g) = (M,φ4g′) is

scalar flat, has negative boundary mean curvature, and satisfies λg > 0.

Proof: Since λg′ > 0, from Proposition 5.12 we can assume without loss of generality that (M, g ′)

satisfies R′ = 0 and h′ = 0.

Let vε ∈ Hs
δ (M) be the unique solution of

−∆ g′vε = 0

∂ν′vε = −ε.

Since s > 3/2, vε depends continuously in C0
δ on ε. Since v0 = 0, we have vε > −1 for ε

sufficiently small. Fixing one such ε > 0 we have φ = 1 + vε > 0. Letting g = φ4g′ we see that

R = 0 and h = −ε2φ−3 < 0. Since λg is a conformal invariant, we have λg = λg′ > 0. ut

Appropriate Transverse Traceless Tensors

To construct transverse-traceless tensors σ H ≤ σ(ν, ν) ≤ 0 we use the Neumann problem for the

vector Laplacian. Suppose ω ∈ Hs− 3
2 is a one form over the boundary such that H ≤ ω(ν) ≤ 0.

From Theorem 5.6 we can solve

∆ � X = 0

B � X = ω

for X ∈ Hs
δ . Setting σ = LX we have σ is transverse traceless, and σ(ν, ν) = ω(ν) has the desired

properties.

Alternatively, suppose S ∈ Hs−1
δ−1 is any symmetric, traceless (0, 2) tensor with H ≤ S(ν, ν) ≤

0. Again, from Theorem 5.6, we can solve

∆ � X = div S

B � X = 0

Setting σ = S−LX we have div σ = 0 and σ(ν, ν) = S(ν, ν). So σ is a transverse-traceless tensor

with H ≤ σ(ν, ν) ≤ 0 as required.
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6.1.2 Open Problems

There remains several interesting questions concerning the apparent horizon boundary problem.

Our construction provides a sufficient condition on the conformal data (M, g, σ) to yield a solution

of the constraints. But we have not found necessary and sufficient conditions, as is possible on

manifolds without boundaries. There are two questions that need to be addressed. First: is the

condition lambdag > 0 necessary? It is for manifolds without boundary, but we have not proved

that it is for the apparent horizon boundary problem. The second, and more significant, problem to

to find a replacement for the condition H ≤ σ(ν, ν). This is not a conformally invariant inequality,

and a more subtle interaction between the metric and σ(ν, ν) needs to be found.

Another question arises in connection with the difference between the results of [Ma03] and

[Da03]. From these papers, we know we can find solutions of the constraint equations such that

either

θ− ≤ θ+ = 0 (implying H ≤ 0)

θ+ ≤ θ− ≤ 0 (implying H ≥ 0)

Neither construction allows one to find surfaces with θ− ≤ θ+ < 0. We can find one-parameter

families of initial data starting with the construction in [Ma03] and terminating with the construction

in [Da03], but only by passing through the condition θ+ = θ− = H = 0. We would like to

understand better the relationship between the two constructions by determining first if one can

construct solutions with θ− ≤ θ+ < 0 (i.e. trapped surfaces with h ≤ 0), and second if we can pass

between the two constructions without going through the condition H = 0.

Finally, there is interest in the numerical relativity community in finding a construction on com-

pact manifolds with boundary. Here the asymptotically Euclidean ends are truncated and a boundary

condition is placed on the new ends. So the boundary of M is divided into two components, one

that satisfies the apparent horizon boundary condition, and one that satisfies a replacement for the

asymptotically Euclidean condition. There already exist in the literature substitutions for the asymp-

totically Euclidean condition (e.g. see [YP82] for the conformal factor and [O’92] for the transverse

traceless tensor). It remains to be seen if these can be coupled with the apparent horizon condition

on the inner boundary.
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6.2 Rough Initial Data

We have already seen in Section 6.1 that it is possible to construct initial data in H s
loc with s >

3/2. We isolate the result for manifolds without boundary here since we can show λg > 0 is both

necessary and sufficient for the Lichnerowicz equation

−8∆φ − |σ|2 φ−7 = 0 (6.5)

to be solvable. We also provide the approximation theorem required by [KR].

Theorem 6.3 Suppose (M 3, g) is AE of class Hs
δ with s > 3/2 and δ ∈ (−1, 0). Let σ be any

transverse-traceless tensor in Hs−1
δ−1 (M). There exists a conformal factor φ solving (6.5) if and only

if λg > 0. Moreover, if a solution exists then it is unique.

Proof: If a solution exists, then it follows form the Hamiltonian constraint that g is conformally

related to a metric with non-negative scalar curvature, and from Proposition 5.12 that λg > 0.

If λg > 0 we can assume without loss of generality that R = 0. Setting φ = 1 + v, solving the

Lichnerowicz equation is equivalent to solving

−8∆ v = |σ|2 (1 + v)−7 (6.6)

with the constraint v > −1.

Evidently v− = 0 is a subsolution of (6.6). To find a supersolution, we solve

−8∆ v+ = |σ|2 .

From the weak maximum principle we find v+ ≥ v− = 0. We can now apply Proposition 5.9 to

find there exists a nonnegative solution v of (6.6) in H s
δ .

Turning to uniqueness, suppose v1 and v2 are two solutions. Then

−8∆ (v1 − v2) = |σ|2 ((1 + v1)
−7 − (1 + v2)

−7). (6.7)

Fixing ε > 0 we have (v1 − v2 − ε)(+) = 0 if v1 ≤ v2 + ε. On the other hand, if v1 > v2 + ε, then

(1 + v1)
−7 − (1 + v2)

−7 < 0. So multiplying (6.7) by (v1 − v2 − ε)(+) and integrating we have

−8

∫

M
(v1 − v2 − ε)(+)∆(v1 − v2) ≤ 0.

Integrating by parts we obtain, exactly as in the proof of Lemma 5.8, that v1 ≤ v2 + ε. Since ε > 0

is arbitrary, v1 ≤ v2 and from symmetry we obtain v1 = v2. ut
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6.2.1 Approximation by Smooth Solutions

The following theorem shows that every solution of the constraints constructed in Theorem 6.3 can

be approximated arbitrarily well by smooth solutions.

Theorem 6.4 Let (M 3, g0,K0) be a maximal AE solution of the constraint equations of class H s
δ

with s > 3/2 and δ ∈ (−1, 0). For any ε > 0, there exists a maximal AE solution (M, gε,Kε) of the

constraint equations of class H t
δ for every t ≥ s such that ||g0−gε||Hs

δ
< ε and ||K0−Kε||Hs−1

δ−1
< ε.

Proof: Let {gk}
∞
k=1 be a sequence of metrics on M in H t

δ for every t ≥ s such that ||gk−g0||Hs
δ
→

0. We will write ∆k� , L
k, and divk for the differential operators corresponding to gk.

To construct a sequence of transverse-traceless tensors, we let {Sk}
∞
k=1 be an arbitrary sequence

of traceless (0, 2)-tensors in H t−1
δ−1 for every t ≥ s converging to K0 in Hs−1

δ−1 . Let Xk ∈ Hs
δ be

the unique solution of ∆k� Xk = divk Sk. Since divk Sk ∈ Ht−2
δ−2 for every t ≥ s, it follows that

LXk ∈ Ht−1
δ−1 for every t ≥ s. Since ∆ � is invertible, we have uniform bounds on the norm of the

inverse of ∆k� . Hence

||Xk||Hs
δ

. ||divk Sk|| . ||divk ||Hs−1
δ−1

||Sk − K0||Hs−1
δ−1

+ ||divk −div ||Hs−1
δ−1

||K0||Hs−1
δ−1

.

So ||Xk||Hs
δ
→ 0. Letting σk = Sk −L

kXk it follows that σk is transverse-traceless with respect to

gk, and is in H t−1
δ−1 for every t ≥ s. Moreover, ||σk−K0||Hs−1

δ−1
≤ ||LkXk||Hs−1

δ−1
+ ||Sk−K||Hs−1

δ−1
→

0.

The correction to gk is now accomplished by the implicit function theorem. Let

F(g, σ, v) = −8∆gv + Rg(1 + v) − |σ|2g (1 + v)−7.

For fixed g and σ, let Fg,σ(v) = F(g, σ, v). Using Lemma 6.5 proved below, we find that the

Fréchet derivative of Fg,σ is

dFg,σ(v)(h) = −a∆gh + Rgh + 7 |σ|2g (1 + v)−8h,

and dFg,σ(v) is hence continuous in a neighbourhood of (g, σ, v) for each v with v > −1. More-

over,

dFg0,K0(0)(h) = L(h) = −a∆g0h + Rg0h + 7 |K0|
2 h.
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Since R0 is nonnegative, L is an isomorphism. Since F(g0,K0, 0) = 0, and since gk → g0 and

σk → K0, the implicit function theorem (e.g. [AP93] Lemma 2.2.1) implies that for k sufficiently

large there exists vk ∈ Hs
δ such that vk → 0 and such that F(gk, σk, vk) = 0. From the equation

F(gk, σk, vk) = 0 and a bootstrap we have vk ∈ Ht
δ for every t ≥ s. Letting g̃k = (1 + vk)

4gk and

K̃k = (1 + vk)
−2σk, we conclude from Lemma 3.6 and Corollary 3.7 that (M, g̃k, K̃k) is an AE

data set of class Hσ
δ for every σ ≥ s and (g̃k − g0, K̃k −K0) converges to 0 in Hs

δ ×Hs−1
δ−1 . Taking

k sufficiently large proves the theorem. ut

The following lemma completes the proof of Theorem 6.4.

Lemma 6.5 Suppose (M 3, g) is AE of class Hs
ρ with s > 3/2 and ρ < 0, and suppose σ ∈ Hs−1

δ−1

with δ ∈ (−1, 0). Let U be the open subset {v ∈ H s
δ : v > −1}, and let G : U → Hs−2

δ−2 be given by

G(v) = |σ|2 (1 + v)−7.

Then G has a Fréchet derivative dG given by

dG(v)(h) = −7 |σ|2 (1 + v)−8h.

Proof: We first consider the maps

g(v) = (1 + v)−7

g′(v) = −7(1 + v)−8.

Since 1 ∈ Hs
ε for every ε > 0, it follows from Lemma 3.6 that g and g ′ are continuous as maps

from U to Hs
ε . Since 1 + v > 0, it follows that there exists a ball Br of radius r in Hs

δ such that

1 + v + h > 0 for all h ∈ Br. Taking h ∈ Br, it follows from the continuity of g ′ that the map

t → g′(v + th)h from [0, 1] to Hs
ε is Bochner integrable. Since evaluation at a point is a continuous

linear functional on Hs
ε , we have from the properties of the Bochner integral

(∫ 1

0
g′(v + th)h dt

)
(x) =

∫ 1

0
g′(v(x) + th(x))h(x) dt = g(v(x) + h(x)) − g(v(x)).

Hence

g(v + h) − g(v) =

∫ 1

0
g′(v + th)h dt.
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Now

||g(v + h) − g(v) − g′(v)h||Hs
ε

=

∣∣∣∣
∣∣∣∣
∫ 1

0

(
g′(v + th) − g′(v)

)
h dt

∣∣∣∣
∣∣∣∣
Hs

ε

≤

∫ 1

0

∣∣∣∣(g′(v + th) − g′(v)
)
h
∣∣∣∣

Hs
ε
dt

≤

∫ 1

0

∣∣∣∣(g′(v + th) − g′(v)
)∣∣∣∣

Hs
ε
dt ||h||Hs

δ
.

Since |σ|2 ∈ Hs−2
2δ−2, we can take ε < −δ to obtain

||G(v + th) − G(v) − dG(v)h||Hs−2
δ−2

. ||σ2||Hs−2
2δ−2

∫ 1

0

∣∣∣∣(g′(v + th) − g′(v)
)∣∣∣∣

Hs
ε
dt ||h||Hs

δ
.

Since g′ is continuous in a neighbourhood of v, it follows that

∫ 1

0

∣∣∣∣(g′(v + th) − g′(v)
)∣∣∣∣

Hs
ε
dt

can be made arbitrarily small by taking ||h||Hs
δ

small. We conclude that dG(v) is the Fréchet

derivative of G at v. ut
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[FB52] Y. Fourès-Bruhat, Théorème d’existence pour certains systm̀es d’équations aux dérivées
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