1. Find an isometry from a part of the *xy*-plane to the cone

$$\mathbf{x}(u,v) = (v\cos u, v\sin u, v)$$

Due: March 27, 2013

where u > 0 and $0 < v < 2\pi$.

- **2.** We have a chart into the helicoid given by $\mathbf{x}(u,v) = (u\cos v, u\sin v, v)$. We have a chart into the catenoid given by $\mathbf{y}(u,v) = (\cosh u\cos v, \cosh u\sin v, u)$. In these charts we restrict $0 < v < 2\pi$. Show that the map taking $\mathbf{y}(u,v)$ to $\mathbf{x}(\sinh u,v)$ is an isometry. This shows that the catenoid is locally isometric to the helicoid.
- 3. Define charts \mathbf{x} and \mathbf{y} as in the previous problem For each t, define

$$\mathbf{x}^t = \cos t \mathbf{y}(u, v + t) + \sin t \mathbf{x}(\sinh u, v + t - \pi/2)$$

Show that $\mathbf{x}^0 = \mathbf{y}$, $\mathbf{x}^{\pi/2} = \mathbf{y}$ and that for each t, show that the map taking $\mathbf{x}(u, v)$ to $\mathbf{x}^t(u, v)$ is an isometry.

For extra credit, use Maple to generate an animation showing this deformation (by isometries) from the catenoid to the helicoid.

4. Let *V* be a vector space and let *A* and *B* be symmetric bilinear forms on *V* such that A(v, v) = B(v, v) for all $v \in V$. Show that A = B.

Hint: Show that A(v, w) can be written in terms an expression only involving terms of the form A(z, z) for certain vectors z.