
Math F412: Homework 12 Solutions May 2, 2013

1. Let γ be a unit speed curve into a surface M with tangent vector T . Suppose the surface is ori-
entable, and has unit normal U . At any point on the curve where T ≡ γ̇ ≠ 0 we can decompose

γ̈ = aT + b(U × T) + cU

for unique constants a,b,c. Moreover, a = 0 since ∣∣γ̇∣∣2 is constant. Recall that the curvature κ of
γ in R3 is

κ = ∣∣γ̈∣∣ =
√
b2 + c2.

Thus we can write
γ̈ = κ cos(ϕ)(U × T) + κ sin(ϕ)U

for some angle ϕ, uniquely de�ned up to multiples of 2π. We called the quantity

κg = κ cos(ϕ)

the geodesic curvature of γ and
κn = κ sin(ϕ)

the normal curvature of γ. The point of this exercise is to generalize the notion of geodesic cur-
vature a little and connect it to the notion of covariant derivatives. You should note that geodesic
curvature, as de�ned, is a signed quantity, like planar curvature. We can do this because the sur-
face is orientable, and hence we can make a global choice of a unit tangent vector perpendicular
to T .

a) Suppose γ is a not-necessarily unit speed curve in M. We de�ne the geodesic and normal
curvatures of γ to be the corresponding curvatures of a unit speed reparameterization of
γ. Show that normal and geodesic curvatures of γ can be computed via

kn =
⟨γ′′,U⟩
⟨γ′, γ′⟩

kg =
⟨γ′′,U × γ′⟩
[⟨γ′, γ′⟩]3/2

.

Hint: Recall that a unit speed reparameterization β of γ satis�es β(s(t)) = γ(t) where s is
the arclength function of γ.

b) Let γ be a regular but not-necessarily unit speed curve in M. Show that

γ′′ = µ′T + kgµ2(U × T) + knµ2U

where T is the unit tangent to γ and µ = ∣γ′∣.

c) Recall that we de�ned that a curve γ is a geodesic if its acceleration is always in the normal
direction. Show that this implies γ is a geodesic if and only if γ′ is parallel along γ.

d) Demonstrate that
∇M

γ γ′ = µ′T + kgµ2(U × T)

and that γ is a geodesic if and only if γ is constant speed and κg is zero along γ.
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Solution, part a:
Let β(s) be a unit speed reparameterization of γ so β(s(t)) = γ(t) where s(t) is an arclength
function. That is, s′(t) = ∣γ′(t)∣. Since β is unit speed,

β′′(s) = κg(U × T) + κnU .

On the other hand,

γ′′(t) = d
dt2

β(s(t))

= β′′(s)s′2 + β′(s)s′′

= β′′(s)s′2 + Ts′′.

Hence

⟨γ′′(t),U⟩ = ⟨β′′(s),U⟩ (s′)2 + ⟨T ,U⟩ s′′

= ⟨κg(U × T) + κnU ,U⟩ s′2 + 0
= κg ⟨(U × T),U⟩ (s′)2 + κn ⟨U ,U⟩ s′2

= κns′2

since U , T , and U × T are all orthonormal. Hence

κn =
⟨γ′′(t),U⟩

s′2
= ⟨γ

′′(t),U⟩
∣γ′∣3

.

Moreover, we similarly have

⟨γ′′(t),U × T⟩ = ⟨β′′(s),U × T⟩ (s′)2 + ⟨T ,U × T⟩ s′′ = κgs′2.

Hence

κg =
⟨γ′′(t),U × T⟩

s′2
= ⟨γ

′′(t),U × (γ′/s′)⟩
s′2

= ⟨γ
′′(t),U × γ′⟩

s′3
= ⟨γ

′′(t),U × γ′⟩
∣γ′∣3/2

.

Solution, part b:
We can write

γ′′ = aT + b(U × T) + cU .

From part (a) we know that

c = ⟨γ′′,U⟩ = κn∣γ′∣2 = µ2κn ,

and
c = ⟨γ′′,U × T⟩ = ⟨γ′′,U × γ′⟩ (1/µ) = kgµ3/mu = kgµ2.

Finally,
⟨γ′, γ′⟩ = µ2
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so
2 ⟨γ′′, γ′⟩ = 2µµ′

and
⟨γ′′, T⟩ = ⟨γ′′, γ′⟩ (1/µ) = µ′.

Hence
γ′′ = µ′T + kgµ2(U × T) + knµ2U .

Solution, part c:
Recall that ∇M

γ γ′ is the projection of (d/dt)γ′(t) into the tangent space of M. Since

γ′′ = µ′T + kgµ2(U × T) + knµ2U .

this occurs precisely when
µ′T + kgµ2(U × T) = 0

and hence
γ′′ = knµ2U .

This last condition if and only if γ is a geodesic.

Solution, part d:
From the previous problem, γ is a geodesic if and only if

µ′T + kgµ2(U × T) = 0.

Since T and U × T are linearly independent, and since µ ≠ 0, this occurs exactly when µ′ and
kg = 0 along the curve, i.e. the curve is constant speed with vanishing geodesic curvature.

2. Show that if v and w are vector �elds de�ned along γ that (v ⋅w)′ = v ⋅ ∇M
γ w +w ⋅ ∇M

γ v.

Solution:
Note that

v′ = ∇M
γ v + cU

for some function c de�ned along γ. Similarly,

w′ = ∇M
γ w + dU .

Hence

(v ⋅w)′ = v ⋅w′ + v′ ⋅w
= v ⋅ (∇M

γ w + dU) + (∇M
γ v + cU) ⋅w .

Since v ⋅U and w ⋅U = 0 we conclude

(v ⋅w)′ = v ⋅ ∇M
γ w +w ⋅ ∇M

γ v

3. Suppose γ is a regular curve in the orientable surface M with normal U . Suppose v is parallel
transported along γ. Show that v⊥ = U × v is also parallel transported along γ, and that {v , v⊥}
is an orthonormal basis along γ.
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Solution:
To show that U × v is parallel transported it is enough to show that

d
dt

U × v = cU

for some function c de�ned along γ. We note that

d
dt

U × v = U ′ × v +U × v′.

Now v is a parallel transported, so v′ = dU for some function d along γ. But then U × v′ =
d(U ×U) = 0. Moreover, since UU̇ = 1,

U ′U̇ = 0

and U ′ is everywhere a tangent vector. Hence U ′ × v is a cross product of two tangent vectors
and is hence everywhere normal. That is,

U ′ × v = cN

for some function c. So (U × v)′ = cN and U × v is parallel.

Suppose at some point p along the curve that v has unit length. Then U × v is orthonormal to v
and (v ,U × v) is then an orthonormal basis for the tangent space TpM. We recall that parallel
transport preserves lengths and angles. Hence v andU ×v remain orthonormal along the curve,
and for an orthonormal basis at each point along the curve.

4. With the same notation as in the previous problem, at each point on the curve we can write
γ̇ = µ(cos(θ)v + sin(θ)v⊥), where µ is the speed of the curve and θ is a function uniquely
de�ned up to multiples of 2π. Show that θ′ = µκg . In particular, for unit speed curves, κg = θ̇.

Solution:
Since v and v⊥ for an orthonormal basis along the curve, we can write

γ̇ = ∣γ̇∣(av + bv⊥)

where a2 + b2 = 1. So we can �nd an angle function θ such that a = cos(θ) and b = sin(θ) along
the curve. Hence

γ̇ = µ(cos(θ)v + sin(θ)v⊥).

But then

∇M
γ γ̇ = µ̇(cos(θ)v + sin(θ)v⊥) + µθ̇(− sin(θ)v + cos θ)v⊥ + µ(cos(θ)∇M

γ v + sin(θ)∇M
γ v⊥)

= µ̇(cos(θ)v + sin(θ)v⊥) + µθ̇(− sin(θ)v + cos θ)v⊥

since v and v⊥ are parallel transported along the curve. Note that T = cos(θ)v + sin(θ)v⊥ and

U × T = U × (cos(θ)v + sin(θ)v⊥) = cos(θ)U × v + sin(θ)U × (U × v) = cos(θ)v⊥ − sin(θ)v .
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So
∇M

γ γ̇ = µ′T + µθ′U × T .

From problem 1,
∇M

γ γ̇ = µ′T + kgµ2(U × T).

Hence kgµ = θ′.

5.

a) Show that for all n ∈ Z, limx→0+ xne−1/x2 = 0.

b) De�ne ϕ(x) = e−1/x2 for x > 0 and ϕ(x) = 0 for x ≤ 0. Show that ϕ is di�erentiable to all
orders at 0 and that all its derivatives vanish there. Hence ϕ is a smooth function.

c) Construct a smooth function that is even, non-negative, equals 1 at 0, and vanishes outside
of (−1, 1).

d) Construct a smooth function that is non-negative, has values in [0, 1], is equal to zero on
(−∞, 0) and is equal to 1 on (1,∞).

Solution, part a:
We show

lim
x→0+

e−1/x2

/
xn = 0

for all n ∈ N. By change of variable it is enough to show

limw →∞wn/2

ew
= 0,

and indeed it is enough to establish this only when n is even, i.e. that

limw →∞wk

ew
= 0,

for all k ∈ N. But this last fact follows from l’Hopital’s rule, (with k derivatives applied to both
the numerator and denominator) to obtain

limw →∞wk

ew
= limw →∞ k!

ew
= 0.

Solution, part b:
We claim that for each n ∈ N that there exist polynomials p and q such that

ϕ(n)(x) =
⎧⎪⎪⎨⎪⎪⎩

e−x2 p(x)q(x) x > 0
0 x ≤ 0.
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The claim is obvious when n = 1. Suppose the claim holds for n ∈ N. Then ϕ(n+1) also has the
desired form for x ≠ 0 as well and it su�ces to show that ϕn is di�erentiable at x = 0 and that the
derivative is 0. Clearly

lim
x→0−

ϕn(x)
x
= 0.

On the other hand,

lim
x→0+

ϕn(x)
x
= lim

x→0+
e−1/x2 p(x)
xq(x)

.

Let M be the order of the polynomial xq(x). Then

lim
x→0+

e−1/x2 p(x)
xq(x)

= lim
x→0+

e−1/x2

xM p(x) xM

xq(x)

By part (b),

lim
x→0+

e−1/x2

xM = 0

and since the remaining terms are bounded, the limit is zero.

6. Suppose γ is a curve from p to q and γ̂ is a reparameterization of γ. Show that Πγ̂
pq = Π

γ
pq

Solution:
We suppose γ has domain [a, b] and that σ ∶ [c, d]→ [a, b] is a functionwith σ(c) = a, σ(d) = b,
and γ̂ = γ ○ σ . Let V ∈ Tγ(a)M, and let let v be the a parallel vector �eld along γ, so v(t) ∈ Tγ(t)M
for each t ∈ [a, b]. So Πγ

p,q(V) = v(b).

We claim that v̂(t) = v(σ(t)) is parallel along γ̂. If this is established, then since v̂(c) = v(σ(c)) =
v(a) = V and v̂(d) = v(b) it follows that

Πγ̂
pqV = v̂(d) = v(b) = Π

γ
pqV .

Since V is arbitrary, the linear maps are the same.

Certainly v̂(t) = v(σ(t)) ∈ Tγ(σ(t))M = Tγ̂(t)M for each t ∈ [c, d], so v̂ is a vector �eld along γ̂.
Moreover

d
dt

v̂ = v′(σ(t))σ ′(t).

Since v is parallel, v′(s) = c(s)U(γ(s)) for some function c de�ned along γ. Hence

v′(σ(t)) = c(σ(t))U(γ(σ(t))) = ĉ(t)U(γ̂(t))

where ĉ = c ○ σ . So
d
dt

v̂ = ĉ(t)σ ′(t)U(γ̂(t))

and therefore v̂ is parallel along γ̂.

7. Compute the inverse of Πγ
pq by explicitly constructing a curve β with Πβ

pq = (Π
γ
pq)−1
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Solution:
We suppose γ ∶ [a, b]→ M. We then de�ne β ∶ [a, b]→ M by

β(t) = γ(a + b − t).

That is, β = γ ○σ where σ(t) = a+b+ t. Suppose V ∈ Tp(M) and let v(t) be its parallel transport
along γ. Let w(t) = v ○ σ . Then w(a) = v(σ(a)) = v(b) = Πγ

pqV . Arguing as in the previous
problem we see that w is parallel along β and hence

Πβ
qpΠ

γ
pqV = w(b) = v(σ(b)) = v(a) = V .

So Πβ
qp is a left inverse of Πγ

pq. But then, since the maps are linear between �nite dimensional
vector spaces, it is a right inverse as well.
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