You proved that every natural number n such that $n \ge 2$ has a prime factorization. This begs the question: can a natural number posess more than one prime factorization? The answer is complicated by the fact that our definition of a prime factorization seems to depend on the order:

$$10 = 2 \cdot 5$$
 and $10 = 5 \cdot 2$

are two different factorizations. To deal with this, we define an ordered prime factorization of *n* to be a sequence p_1, \ldots, p_k of primes such that $p_1 \le p_2 \le \cdots \le p_k$ and such that

$$n=p_1\cdot\cdots\cdot p_k.$$

Given a prime factorization, we can always obtain an ordered prime factorization simply by rearranging the factors. Making this absolutely precise is a little subtle and involves tacking down the notion of rearranging a set. We might address this a little later.

Assuming we can do the rearranging, one way to approach the uniqueness question is to show that every $n \in \mathbb{Z}_{\geq 2}$ has no more than one ordered prime factorization.

Proposition 6.D: Suppose (p_1, \ldots, p_k) and (q_1, \ldots, q_ℓ) are finite sequences of primes such that

$$p_1 \cdots p_k = q_1 \cdots q_\ell$$

and such that $p_1 \leq \cdots \leq p_k$ and $q_1 \leq \cdots \leq q_\ell$. Then $k = \ell$ and $p_i = q_i$ for $1 \leq i \leq k$.

Proof. Let P(K) be the statement that if (p_1, \ldots, p_k) and (q_1, \ldots, q_ℓ) are finite sequences of primes such that $k \le K$ and $\ell \le K$, and such that

$$p_1 \cdots p_k = q_1 \cdots q_\ell,$$

then $k = \ell$ and $p_i = q_i$ for $1 \le i \le k$. We will show that P(K) is true for all $K \in \mathbb{N}$ by induction on K. The case K = 1 is obvious.

Suppose for some $K \in \mathbb{N}$ that P(K) is true. Now suppose (p_1, \ldots, p_k) and (q_1, \ldots, q_ℓ) are finite sequences of primes such that $k \le K + 1$ and $\ell \le K + 1$, and such that

$$p_1 \cdots p_k = q_1 \cdots q_\ell$$

Now either k = 1 or k > 1. Suppose k = 1. Then

$$p_1 = q_1 \cdot \cdots \cdot q_\ell.$$

Since p_1 is prime, and since each factor on the right-hand-side is a natural number larger than 1, each one must be p_1 . So $p_1 = q_1^{\ell}$. But $p_1^{\ell} > p_1$ if $\ell > 1$. Hence $\ell = 1$ and $p_1 = q_1$.

The result is proved similarly if $\ell = 1$, so we turn to the case where k > 1 and $\ell > 1$ as well. Without loss of generality, we may assume $p_k \ge q_\ell$. Since p_k is prime, and since it divides the product on the left, our corollary of Euclid's lemma implies that p_k divides the product on the right. Thus $p_k = q_i$ for some *i*. Now $q_j \le q_\ell$ for all *j*, so $p_k \le q_\ell$. Since $p_k \ge q_\ell$ as well we conclude that $p_k = q_\ell$. Since $p_k \ne 0$, we can apply Axiom 1.5 and conclude

$$p_1 \cdots p_{k-1} = q_1 \cdots q_{\ell-1}$$

Applying the induction hypothesis we conclude that $k - 1 = \ell - 1$ and hence $k = \ell$. Moreover, $p_i = q_i$ for $1 \le i \le k - 1$. Since $p_k = q_\ell = q_k$ as well, we have established that P(K + 1) is also true.

We can now establish existence and uniqueness of ordered prime factorizations as follows. Let $n \in \mathbb{Z}$ with $n \ge 2$. Given a prime factorization of it, rearrange it to obtain an ordered prime factorization. (Mild hole here!) This establishes existence. Uniqueness follows immediately from Proposition 6.D.