You proved that every natural number n such that $n \geq 2$ has a prime factorization. This begs the question: can a natural number posess more than one prime factorization? The answer is complicated by the fact that our definition of a prime factorization seems to depend on the order:

$$
10=2 \cdot 5 \quad \text { and } \quad 10=5 \cdot 2
$$

are two different factorizations. To deal with this, we define an ordered prime factorization of n to be a sequence p_{1}, \ldots, p_{k} of primes such that $p_{1} \leq p_{2} \leq \cdots \leq p_{k}$ and such that

$$
n=p_{1} \cdots \cdots p_{k} .
$$

Given a prime factorization, we can always obtain an ordered prime factorization simply by rearranging the factors. Making this absolutely precise is a little subtle and involves tacking down the notion of rearranging a set. We might address this a little later.

Assuming we can do the rearranging, one way to approach the uniqueness question is to show that every $n \in \mathbb{Z}_{\geq 2}$ has no more than one ordered prime factorization.

Proposition 6.D: Suppose $\left(p_{1}, \ldots, p_{k}\right)$ and $\left(q_{1}, \ldots, q_{\ell}\right)$ are finite sequences of primes such that

$$
p_{1} \cdots \cdots \cdots \cdot p_{k}=q_{1} \cdots \cdots \cdots \cdot q_{\ell}
$$

and such that $p_{1} \leq \cdots \leq p_{k}$ and $q_{1} \leq \cdots \leq q_{\ell}$. Then $k=\ell$ and $p_{i}=q_{i}$ for $1 \leq i \leq k$.
Proof. Let $P(K)$ be the statement that if $\left(p_{1}, \ldots, p_{k}\right)$ and $\left(q_{1}, \ldots, q_{\ell}\right)$ are finite sequences of primes such that $k \leq K$ and $\ell \leq K$, and such that

$$
p_{1} \cdots \cdots \cdots \cdots p_{k}=q_{1} \cdots \cdots \cdots \cdots q_{\ell}
$$

then $k=\ell$ and $p_{i}=q_{i}$ for $1 \leq i \leq k$. We will show that $P(K)$ is true for all $K \in \mathbb{N}$ by induction on K. The case $K=1$ is obvious.

Suppose for some $K \in \mathbb{N}$ that $P(K)$ is true. Now suppose $\left(p_{1}, \ldots, p_{k}\right)$ and $\left(q_{1}, \ldots, q_{\ell}\right)$ are finite sequences of primes such that $k \leq K+1$ and $\ell \leq K+1$, and such that

$$
p_{1} \cdots \cdot p_{k}=q_{1} \cdots \cdot q_{\ell}
$$

Now either $k=1$ or $k>1$. Suppose $k=1$. Then

$$
p_{1}=q_{1} \cdots \cdots q_{\ell} .
$$

Since p_{1} is prime, and since each factor on the right-hand-side is a natural number larger than 1 , each one must be p_{1}. So $p_{1}=q_{1}^{\ell}$. But $p_{1}^{\ell}>p_{1}$ if $\ell>1$. Hence $\ell=1$ and $p_{1}=q_{1}$.
The result is proved similarly if $\ell=1$, so we turn to the case where $k>1$ and $\ell>1$ as well. Without loss of generality, we may assume $p_{k} \geq q_{\ell}$. Since p_{k} is prime, and since it divides the product on the left, our corollary of Euclid's lemma implies that p_{k} divides the product on the right. Thus $p_{k}=q_{i}$ for some i. Now $q_{j} \leq q_{\ell}$ for all j, so $p_{k} \leq q_{\ell}$. Since $p_{k} \geq q_{\ell}$ as well we conclude that $p_{k}=q_{\ell}$. Since $p_{k} \neq 0$, we can apply Axiom 1.5 and conclude

$$
p_{1} \cdots \cdots \cdots \cdot p_{k-1}=q_{1} \cdots \cdots \cdots \cdot q_{\ell-1}
$$

Applying the induction hypothesis we conclude that $k-1=\ell-1$ and hence $k=\ell$. Moreover, $p_{i}=q_{i}$ for $1 \leq i \leq k-1$. Since $p_{k}=q_{\ell}=q_{k}$ as well, we have established that $P(K+1)$ is also true.

We can now establish existence and uniqueness of ordered prime factorizations as follows. Let $n \in \mathbb{Z}$ with $n \geq 2$. Given a prime factorization of it, rearrange it to obtain an ordered prime factorization. (Mild hole here!) This establishes existence. Uniqueness follows immediately from Proposition 6.D.

