Proposition 4.30: For all $k, m \in \mathbb{N}$, where $m \geq 2$,

$$
f_{m+k}=f_{m-1} f_{k}+f_{m} f_{k+1} .
$$

Proposition 4.30: For all $k, m \in \mathbb{N}$, where $m \geq 2$,

$$
f_{m+k}=f_{m-1} f_{k}+f_{m} f_{k+1} .
$$

Proof. Let $m \in \mathbb{Z}_{\geq 2}$. We will show that

$$
f_{m+k}=f_{m-1} f_{k}+f_{m} f_{k+1}
$$

for all $k \in \mathbb{N}$ by strong induction.
Suppose for some $n \in \mathbb{N}$ that

$$
f_{m+k}=f_{m-1} f_{k}+f_{m} f_{k+1}
$$

for all $k \in \mathbb{N}$ such that $k<n$. We wish to show that

$$
f_{m+n}=f_{m-1} f_{n}+f_{m} f_{n+1}
$$

as well.
Now either $n=1, n=2$, or $n \geq 3$.
If $n=1$,

$$
f_{m+n}=f_{m+1}=f_{m-1}+f_{m}
$$

since $m+1 \geq 2+1=3$. But

$$
\begin{aligned}
f_{m-1}+f_{m} & =f_{m-1} \cdot 1+f_{m} \cdot 1 \\
& =f_{m-1} \cdot f_{1}+f_{m} \cdot f_{2} \\
& =f_{m-1} \cdot f_{n}+f_{m} \cdot f_{n+1} .
\end{aligned}
$$

Hence

$$
f_{m+n}=f_{m-1} \cdot f_{n}+f_{m} \cdot f_{n+1} .
$$

If $n=2$, since $m+2 \geq 3$ and $m+1 \geq 3$,

$$
f_{m+n}=f_{m+2}=f_{m}+f_{m+1}=f_{m}+f_{m-1}+f_{m}=f_{m-1} \cdot 1+f_{m} \cdot 2 .
$$

But

$$
\begin{aligned}
f_{m-1} \cdot 1+f_{m} \cdot 2 & =f_{m-1} \cdot f_{2}+f_{m} \cdot f_{3} \\
& =f_{m-1} \cdot f_{n}+f_{m} \cdot f_{n+1} .
\end{aligned}
$$

So

$$
f_{m+n}=f_{m-1} \cdot f_{n}+f_{m} \cdot f_{n+1} .
$$

Suppose $n \geq 3$. Since $m+n \geq 3$,

$$
f_{m+n}=f_{m+n-2}+f_{m+n-1} .
$$

Since $n \geq 3,1 \leq n-1<n$ and $1 \leq n-2<n$, and hence, by the inductive hypothesis,

$$
\begin{aligned}
& f_{m+n-2}=f_{m-1} f_{n-2}+f_{m} f_{n-1} \quad \text { and } \\
& f_{m+n-1}=f_{m-1} f_{n-1}+f_{m} f_{n} .
\end{aligned}
$$

So

$$
\begin{aligned}
f_{m+n} & =\left(f_{m-1} f_{n-2}+f_{m} f_{n-1}\right)+\left(f_{m-1} f_{n-1}+f_{m} f_{n}\right) \\
& =f_{m-1}\left[f_{n-2}+f_{n-1}\right]+f_{m}\left[f_{n-1}+f_{n}\right] .
\end{aligned}
$$

Since $n \geq 3, f_{n}=f_{n-2}+f_{n-1}$ and $f_{n+1}=f_{n-1}+f_{n}$. So

$$
f_{m+n}=f_{m-1} f_{n}+f_{m} f_{n+1} .
$$

An integer n is odd if there exists an integer j such that $n=2 j+1$.

Proposition 9.A: Every integer is either even or odd, and no integer is both.
Proof. We first show that if $n \in \mathbb{Z}_{\geq 0}$ that n is either even or odd by induction on n. The base case is clear because $0=2 \cdot 0$ is even. Suppose for some $n \in \mathbb{Z}_{\geq 0}$ that n is either even or odd. Suppose n is even, so $n=2 j$ for some $j \in \mathbb{Z}$. Then $n+1=2 j+1$ and $n+1$ is odd. Suppose n is odd. Then $n=2 k+1$ for some $k \in \mathbb{Z}$. So $n+1=2 k+2=2(k+1)$. So $n+1$ is even. Thus, regardless of whether n is even or odd, $n+1$ is either even or odd.

We have shown that non-negative integers are either even or odd. We now show the same holds for negative integers as well. Suppose $x \in \mathbb{Z}$ and $x<0$. Let $y=-x$, so $y>0$ and y is either even or odd. Suppose y is even, so $y=2 j$ for some $j \in \mathbb{Z}$. Then $x=-y=2(-j)$, so x is even. Suppose y is odd, so $y=2 k$ for some $k \in \mathbb{Z}$. Then

$$
x=-y=2(-k)-1=2(-k)-2+1=2(-k-1)+1 .
$$

So x is odd. Thus x is either even or odd.
Since every integer is either non-negative or negative, we have shown that all integers are either even or odd.

Now suppose to produce a contradiction that $x \in \mathbb{Z}$ and x is both even and odd. So $x=2 k+1$ and $x=2 j$ for certain integers j and k. Hence

$$
2 k+1=2 j
$$

and

$$
2(j-k)=1 .
$$

Hence $2 \mid 1$. Since $2>1$, this contradicts Proposition 2.23.

Proposition 6.5: Assume we are given an equivalence relation on a set A. For all $a_{1}, a_{2} \in$ A, either $\left[a_{1}\right]=\left[a_{2}\right]$ or $\left[a_{1}\right] \cap\left[a_{2}\right]=\emptyset$.

Proof. Let $a_{1}, a_{2} \in A$. It suffices to show that if $\left[a_{1}\right] \cap\left[a_{2}\right] \neq \emptyset$ then $\left[a_{1}\right]=\left[a_{2}\right]$. Suppose $b \in\left[a_{1}\right] \cap\left[a_{2}\right]$. Then $a_{1} \sim b$ and $a_{2} \sim b$ by the definition of equivalence classes. By transitivity, $a_{1} \sim a_{2}$. So by Propositoin 6.4(ii), $\left[a_{1}\right]=\left[a_{2}\right]$.

Proposition 6.6 (Partial): Let A be a set and let Π be a partition of A. We define $a \sim b$ if there exists $P \in \Pi$ such that $a \in P$ and $b \in P$. Then \sim is an equivalence relation.

Proof. We must show that \sim is reflexive, symmetric, and transitive.
bf Reflexive: Suppose $a \in A$. Since Π is a partition, there exists $P \in \Pi$ such that $a \in P$. Hence $a \in P$ and $a \in P$, so $a \sim a$.

Symmetric: Suppose $a, b \in A$ and $a \sim b$. Then there exists $P \in \Pi$ such that $a, b \in P$. Since $b, a \in P, b \sim a$.

Transitive: Suppose $a, b, c \in A$ and $a \sim b$ and $b \sim c$. Then there exists $P \in \Pi$ such that $a, b \in P$ and there exists $Q \in \Pi$ such that $b, c \in Q$. Note that $b \in P$ and $b \in Q$. Since Π is a partition, and since $P \cap Q \neq \emptyset$, it follows that $P=Q$. Since $a \in P$ and $c \in Q=P$, $a \sim c$.

Project 6.7: For each of the following relations defined on \mathbb{Z}, determine whether it is an equivalence relation. If it is, determine its equivalence classes.

1. $x \sim y$ if $x<y$. This is not an equivalence relation. Note that 0×0, so \sim is not reflexive.
2. $x \sim y$ if $x \leq y$. This is not an equivalence relation. Note that $0 \sim 1$ but $1 \nsim 0$, so \sim is not symmetric.
3. $x \sim y$ if $|x|=|y|$. This is an equivalence relation. If $x \in \mathbb{Z}$, clearly $|x|=|x|$ and hence $x \sim x$. Suppose $x, y \in \mathbb{Z}$ and $x \sim y$. Then $|x|=|y|$. Since $|y|=|x|, y \sim x$. Suppose $x, y, z \in \mathbb{Z}, x \sim y$, and $y \sim z$. Then $|x|=|y|$ and $|y|=|z|$ so $|x|=|z|$. Hence $x \sim z$. If $x \in \mathbb{Z},[x]=\{x,-x\}$.
4. $x \sim y$ if $x \neq y$. This is not an equivalence relation. Since $0 \nsim 0$, it is not reflexive.
5. $x \sim y$ if $x y>0$. This is not an equivalence relation. Note that $0 \nsim 0$ as $0 \cdot 0=0$, so $0 \cdot 0 \ngtr 0$. Hence \sim is not reflexive.
6. $x \sim y$ if $x \mid y$ or $y \mid x$. This is not an equivalence relation. Note that $2 \mid 10$ and $5 \mid 10$, so $2 \sim 10$ and $10 \sim 5$. But $2 \nmid 5$ and $5 \nmid 2$ so $2 \nsim 5$ and transitivity fails.

Proposition 6.17: Let $m \in \mathbb{Z}$. Then m is even if and only if m^{2} is even.

Proof. Suppose m is even. Then there exists $j \in \mathbb{Z}$ such that $m=2 j$. Since $m^{2}=2\left(2 j^{2}\right)$, m^{2} is even.

We prove the converse using the contrapositive. Suppose m is not even. By Proposition 6.15 , there exists $j \in \mathbb{Z}$ such that $m=2 j+1$. Hence

$$
m^{2}=(2 j+1)(2 j+1)=2(j(2 j+1)+j)+1 .
$$

By Proposition 6.14, m^{2} is odd, so m^{2} is not even.

