Proposition 4.30: For all $k, m \in \mathbb{N}$, where $m \ge 2$,

$$f_{m+k} = f_{m-1}f_k + f_m f_{k+1}.$$

Proposition 4.30: For all $k, m \in \mathbb{N}$, where $m \ge 2$,

$$f_{m+k} = f_{m-1}f_k + f_m f_{k+1}.$$

Proof. Let $m \in \mathbb{Z}_{\geq 2}$. We will show that

$$f_{m+k} = f_{m-1}f_k + f_m f_{k+1}$$

for all $k \in \mathbb{N}$ by strong induction.

Suppose for some $n \in \mathbb{N}$ that

$$f_{m+k} = f_{m-1}f_k + f_m f_{k+1}$$

for all $k \in \mathbb{N}$ such that k < n. We wish to show that

$$f_{m+n} = f_{m-1}f_n + f_m f_{n+1}$$

as well.

Now either
$$n = 1$$
, $n = 2$, or $n \ge 3$.

If n = 1,

$$f_{m+n} = f_{m+1} = f_{m-1} + f_m$$

since $m + 1 \ge 2 + 1 = 3$. But

$$f_{m-1} + f_m = f_{m-1} \cdot 1 + f_m \cdot 1$$

= $f_{m-1} \cdot f_1 + f_m \cdot f_2$
= $f_{m-1} \cdot f_n + f_m \cdot f_{n+1}$.

Hence

$$f_{m+n} = f_{m-1} \cdot f_n + f_m \cdot f_{n+1}.$$

If n = 2, since $m + 2 \ge 3$ and $m + 1 \ge 3$,

$$f_{m+n} = f_{m+2} = f_m + f_{m+1} = f_m + f_{m-1} + f_m = f_{m-1} \cdot 1 + f_m \cdot 2.$$

But

$$f_{m-1} \cdot 1 + f_m \cdot 2 = f_{m-1} \cdot f_2 + f_m \cdot f_3$$

= $f_{m-1} \cdot f_n + f_m \cdot f_{n+1}$

So

$$f_{m+n} = f_{m-1} \cdot f_n + f_m \cdot f_{n+1}.$$

Suppose $n \ge 3$. Since $m + n \ge 3$,

$$f_{m+n} = f_{m+n-2} + f_{m+n-1}.$$

Since $n \ge 3$, $1 \le n - 1 < n$ and $1 \le n - 2 < n$, and hence, by the inductive hypothesis,

$$f_{m+n-2} = f_{m-1}f_{n-2} + f_m f_{n-1}$$
 and
 $f_{m+n-1} = f_{m-1}f_{n-1} + f_m f_n.$

So

$$f_{m+n} = (f_{m-1}f_{n-2} + f_m f_{n-1}) + (f_{m-1}f_{n-1} + f_m f_n)$$

= $f_{m-1} [f_{n-2} + f_{n-1}] + f_m [f_{n-1} + f_n].$

Since $n \ge 3$, $f_n = f_{n-2} + f_{n-1}$ and $f_{n+1} = f_{n-1} + f_n$. So

$$f_{m+n} = f_{m-1}f_n + f_m f_{n+1}.$$

An integer *n* is **odd** if there exists an integer *j* such that n = 2j + 1.

Proposition 9.A: Every integer is either even or odd, and no integer is both.

Proof. We first show that if $n \in \mathbb{Z}_{\geq 0}$ that *n* is either even or odd by induction on *n*. The base case is clear because $0 = 2 \cdot 0$ is even. Suppose for some $n \in \mathbb{Z}_{\geq 0}$ that *n* is either even or odd. Suppose *n* is even, so n = 2j for some $j \in \mathbb{Z}$. Then n+1 = 2j+1 and n+1 is odd. Suppose *n* is odd. Then n = 2k+1 for some $k \in \mathbb{Z}$. So n+1 = 2k+2 = 2(k+1). So n + 1 is even. Thus, regardless of whether *n* is even or odd, n + 1 is either even or odd.

We have shown that non-negative integers are either even or odd. We now show the same holds for negative integers as well. Suppose $x \in \mathbb{Z}$ and x < 0. Let y = -x, so y > 0 and y is either even or odd. Suppose y is even, so y = 2j for some $j \in \mathbb{Z}$. Then x = -y = 2(-j), so x is even. Suppose y is odd, so y = 2k for some $k \in \mathbb{Z}$. Then

$$x = -y = 2(-k) - 1 = 2(-k) - 2 + 1 = 2(-k - 1) + 1.$$

So *x* is odd. Thus *x* is either even or odd.

Since every integer is either non-negative or negative, we have shown that all integers are either even or odd.

Now suppose to produce a contradiction that $x \in \mathbb{Z}$ and x is both even and odd. So x = 2k + 1 and x = 2j for certain integers j and k. Hence

$$2k + 1 = 2j$$

and

$$2(j-k) = 1.$$

Hence $2 \mid 1$. Since 2 > 1, this contradicts Proposition 2.23.

Proposition 6.5: Assume we are given an equivalence relation on a set *A*. For all $a_1, a_2 \in A$, either $[a_1] = [a_2]$ or $[a_1] \cap [a_2] = \emptyset$.

Proof. Let $a_1, a_2 \in A$. It suffices to show that if $[a_1] \cap [a_2] \neq \emptyset$ then $[a_1] = [a_2]$. Suppose $b \in [a_1] \cap [a_2]$. Then $a_1 \sim b$ and $a_2 \sim b$ by the definition of equivalence classes. By transitivity, $a_1 \sim a_2$. So by Propositoin 6.4(ii), $[a_1] = [a_2]$.

Proposition 6.6 (Partial): Let *A* be a set and let Π be a partition of *A*. We define $a \sim b$ if there exists $P \in \Pi$ such that $a \in P$ and $b \in P$. Then \sim is an equivalence relation.

Proof. We must show that \sim is reflexive, symmetric, and transitive.

bf Reflexive: Suppose $a \in A$. Since Π is a partition, there exists $P \in \Pi$ such that $a \in P$. Hence $a \in P$ and $a \in P$, so $a \sim a$.

Symmetric: Suppose $a, b \in A$ and $a \sim b$. Then there exists $P \in \Pi$ such that $a, b \in P$. Since $b, a \in P, b \sim a$.

Transitive: Suppose $a, b, c \in A$ and $a \sim b$ and $b \sim c$. Then there exists $P \in \Pi$ such that $a, b \in P$ and there exists $Q \in \Pi$ such that $b, c \in Q$. Note that $b \in P$ and $b \in Q$. Since Π is a partition, and since $P \cap Q \neq \emptyset$, it follows that P = Q. Since $a \in P$ and $c \in Q = P$, $a \sim c$.

Project 6.7: For each of the following relations defined on \mathbb{Z} , determine whether it is an equivalence relation. If it is, determine its equivalence classes.

- 1. $x \sim y$ if x < y. This is not an equivalence relation. Note that $0 \neq 0$, so \sim is not reflexive.
- 2. $x \sim y$ if $x \leq y$. This is not an equivalence relation. Note that $0 \sim 1$ but $1 \neq 0$, so \sim is not symmetric.
- 3. $x \sim y$ if |x| = |y|. This is an equivalence relation. If $x \in \mathbb{Z}$, clearly |x| = |x| and hence $x \sim x$. Suppose $x, y \in \mathbb{Z}$ and $x \sim y$. Then |x| = |y|. Since $|y| = |x|, y \sim x$. Suppose $x, y, z \in \mathbb{Z}, x \sim y$, and $y \sim z$. Then |x| = |y| and |y| = |z| so |x| = |z|. Hence $x \sim z$. If $x \in \mathbb{Z}$, $[x] = \{x, -x\}$.
- 4. $x \sim y$ if $x \neq y$. This is not an equivalence relation. Since $0 \neq 0$, it is not reflexive.
- 5. $x \sim y$ if xy > 0. This is not an equivalence relation. Note that $0 \neq 0$ as $0 \cdot 0 = 0$, so $0 \cdot 0 \neq 0$. Hence \sim is not reflexive.
- 6. $x \sim y$ if $x \mid y$ or $y \mid x$. This is not an equivalence relation. Note that $2 \mid 10$ and $5 \mid 10$, so $2 \sim 10$ and $10 \sim 5$. But $2 \nmid 5$ and $5 \nmid 2$ so $2 \nsim 5$ and transitivity fails.

Proposition 6.17: Let $m \in \mathbb{Z}$. Then *m* is even if and only if m^2 is even.

Proof. Suppose *m* is even. Then there exists $j \in \mathbb{Z}$ such that m = 2j. Since $m^2 = 2(2j^2)$, m^2 is even.

We prove the converse using the contrapositive. Suppose *m* is not even. By Proposition 6.15, there exists $j \in \mathbb{Z}$ such that m = 2j + 1. Hence

$$m^2 = (2j + 1)(2j + 1) = 2(j(2j + 1) + j) + 1.$$

By Proposition 6.14, m^2 is odd, so m^2 is not even.