Proposition 4.30: For all $k, m \in \mathbb{N}$, where $m \ge 2$,

$$f_{m+k} = f_{m-1}f_k + f_m f_{k+1}.$$

Proof. Your proof goes here.

An integer *n* is **odd** if there exists an integer *j* such that n = 2j + 1.

Proposition 9.A: Every integer is either even or odd, and no integer is both.

Proof. Your proof goes here. Use only material from Chapter 2 or earlier in your proof. \Box

Proposition 6.5: Assume we are given an equivalence relation on a set *A*. For all $a_1, a_2 \in A$, either $[a_1] = [a_2]$ or $[a_1] \cap [a_2] = \emptyset$.

Proof. Your proof goes here.

Proposition 6.6 (Partial): Let *A* be a set and let Π be a partition of *A*. We define $a \sim b$ if there exists $P \in \Pi$ such that $a \in P$ and $b \in P$. Then \sim is an equivalence relation.

Proof. Your proof goes here.

Project 6.7: For each of the following relations defined on \mathbb{Z} , determine whether it is an equivalence relation. If it is, determine its equivalence classes.

- 1. $x \sim y$ if x < y.
- 2. $x \sim y$ if $x \leq y$.
- 3. $x \sim y$ if |x| = |y|.
- 4. $x \sim y$ if $x \neq y$.
- 5. $x \sim y$ if xy > 0.
- 6. $x \sim y$ if $x \mid y$ or $y \mid x$.

Proposition 6.17: Let $m \in \mathbb{Z}$. Then *m* is even if and only if m^2 is even.

Proof. Your proof goes here.

Proposition 6.25: If $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$ then

$$a + b \equiv a' + b' \pmod{n}$$

and

$$ab \equiv a'b' \pmod{n}$$
.

Proof. Your proof goes here.

Project 6.27: Study the set *n* such that \mathbb{Z}_n satisfies the cancellation property (Axiom 1.5). You should form a conjecture, and then prove it. Start working on the problem now, but it won't be due until the next assignment.