Proposition 4.30: For all $k, m \in \mathbb{N}$, where $m \geq 2$,

$$
f_{m+k}=f_{m-1} f_{k}+f_{m} f_{k+1} .
$$

Proof. Your proof goes here.
An integer n is odd if there exists an integer j such that $n=2 j+1$.

Proposition 9.A: Every integer is either even or odd, and no integer is both.
Proof. Your proof goes here. Use only material from Chapter 2 or earlier in your proof.

Proposition 6.5: Assume we are given an equivalence relation on a set A. For all $a_{1}, a_{2} \in$ A, either $\left[a_{1}\right]=\left[a_{2}\right]$ or $\left[a_{1}\right] \cap\left[a_{2}\right]=\emptyset$.

Proof. Your proof goes here.

Proposition 6.6 (Partial): Let A be a set and let Π be a partition of A. We define $a \sim b$ if there exists $P \in \Pi$ such that $a \in P$ and $b \in P$. Then \sim is an equivalence relation.

Proof. Your proof goes here.

Project 6.7: For each of the following relations defined on \mathbb{Z}, determine whether it is an equivalence relation. If it is, determine its equivalence classes.

1. $x \sim y$ if $x<y$.
2. $x \sim y$ if $x \leq y$.
3. $x \sim y$ if $|x|=|y|$.
4. $x \sim y$ if $x \neq y$.
5. $x \sim y$ if $x y>0$.
6. $x \sim y$ if $x \mid y$ or $y \mid x$.

Proposition 6.17: Let $m \in \mathbb{Z}$. Then m is even if and only if m^{2} is even.
Proof. Your proof goes here.

Proposition 6.25: If $a \equiv a^{\prime}(\bmod n)$ and $b \equiv b^{\prime}(\bmod n)$ then

$$
a+b \equiv a^{\prime}+b^{\prime} \quad(\bmod n)
$$

and

$$
a b \equiv a^{\prime} b^{\prime} \quad(\bmod n) .
$$

Proof. Your proof goes here.

Project 6.27: Study the set n such that \mathbb{Z}_{n} satisfies the cancellation property (Axiom 1.5). You should form a conjecture, and then prove it. Start working on the problem now, but it won't be due until the next assignment.

