Proposition 4.8: For all $k \in \mathbb{N}, 4^{k}>k$.
Proof. Your proof goes here.

Proposition 4.13: For $x \neq 1$ and $k \in \mathbb{Z}_{\geq 0}, \sum_{j=0}^{k} x^{j}=\frac{1-x^{k+1}}{1-x}$.

Hint: Show that $(1-x) \sum_{j=0}^{k} x^{j}=1-x^{k+1}$.
Proof. Your proof goes here.
Proposition 4.15(i): Let $m \in \mathbb{Z}$ and $\left(x_{j}\right)_{j=1}^{\infty}$ be a sequence in \mathbb{Z}. If then for all $k \in \mathbb{N}$

$$
\sum_{j=1}^{k} m x_{j}=m \sum_{j=1}^{k} x_{j} .
$$

Proof. Your proof goes here.

Proposition 4.15(iii): Let $\left(x_{j}\right)_{j=1}^{\infty}$ be a sequence in \mathbb{Z}. If $x_{j}=n \in \mathbb{Z}$ for all $j \in \mathbb{N}$ then for all $k \in \mathbb{N}$

$$
\sum_{j=1}^{k} x_{j}=k n
$$

Proof. Your proof goes here.

Proposition 4.16(ii): Let $\left(x_{j}\right)_{j=m}^{\infty}$ and $\left(y_{j}\right)_{j=m}^{\infty}$ be sequences in \mathbb{Z}. For all $a, b \in \mathbb{Z}$ such that $m \leq a \leq b$,

$$
\sum_{j=a}^{b}\left(x_{j}+y_{j}\right)=\sum_{j=a}^{b} x_{j}+\sum_{j=a}^{b} y_{j} .
$$

Proof. Your proof goes here.

Proposition 4.18: Let $\left(x_{j}\right)_{j=1}^{\infty}$ and $\left(y_{j}\right)_{j=1}^{\infty}$ be sequences in \mathbb{Z} such that $x_{j} \leq y_{j}$ for all $j \in \mathbb{N}$. Then for all $k \in \mathbb{N}$,

$$
\sum_{j=1}^{k} x_{j} \leq \sum_{j=1}^{k} y_{j}
$$

Proof. Your proof goes here.

Proposition 4.30: For all $k, m \in \mathbb{N}$, where $m \geq 2$,

$$
f_{m+k}=f_{m-1} f_{k}+f_{m} f_{k+1} .
$$

Proof. Your proof goes here.

