Proposition 4.5: For all $k \in \mathbb{Z}_{\geq 0}, k!\in \mathbb{N}$.
Proof. Your proof here.

Proposition 4.7 (i): For all $k \in \mathbb{N}, 5^{2 k}-1$ is divisible by 24.
Proof. Your proof here.

Proposition 4.6(iii): Let $b \in \mathbb{Z}$ and $m, k \geq 0$. Then $\left(b^{m}\right)^{k}=b^{m k}$.
Proof.

Proposition 4.11: For all $k \in \mathbb{N}$,

$$
2 \sum_{j=1}^{k} j=k(k+1) .
$$

Proof.

Proposition 4.A: Suppose a and b are integers such that $a \neq 0$ and $a \mid b$. Then there exists a unique integer j such that $b=a j$.

Proof.
There is nothing more to prove on this homework. The discussion below explains how to rewrite the result of Proposition 4.11 more naturally using Proposition 4.A.

Definition: Suppose that a and b are integers such that $a \neq 0$ and $a \mid b$. We define

$$
\frac{b}{a}=j
$$

where j is the unique integer such that $b=a j$

If a, b, and c are integers (with $a \neq 0$) and if we write

$$
\frac{b}{a}=c
$$

we mean a divides b and $b=c a$. To show that $\frac{b}{a}=c$ you simply show that $b=a c$. With this definition in mind, Proposition 4.11 can be rephrased

$$
\sum_{j=1}^{k} j=\frac{k(k+1)}{2}
$$

