Proposition 4.5: For all $k \in \mathbb{Z}_{\geq 0}, k! \in \mathbb{N}$.

Proof. We proceed by induction on $k \ge 0$. When $k = 0, k! = 0! = 1 \in \mathbb{N}$. This establishes the base case. Suppose for some $k \in \mathbb{Z}_{\ge 0}$ that $k! \in \mathbb{N}$. Since $k \ge 0$, $k + 1 \ge 1 \in \mathbb{N}$. Since $k! \in \mathbb{N}$ as well,

$$(k+1)! = k!(k+1) \in \mathbb{N}.$$

Proposition 4.7 (i): For all $k \in \mathbb{N}$, $5^{2k} - 1$ is divisible by 24.

Proof. We proceed by induction on $k \in \mathbb{N}$. Observe that when k = 0, $5^{2k} - 1 = 5^0 - 1 = 0$. Since $0 \mid 0$, the base case is established.

Suppose for some $k \in \mathbb{N}$ that $24 \mid 5^{2k} - 1$. Hence there exists an integer *j* such that $5^{2k} - 1 = 24j$. Then

$$5^{2(k+1)} - 1 = 5^{2k}5^2 - 1$$

= $(5^{2k} - 1)5^2 + 5^2 - 1$
= $24j \cdot 25 + 24$
= $24(25j + 1)$.

Hence $24 \mid 5^{2(k+1)} - 1$.

Proposition 4.6(iii): Let $b \in \mathbb{Z}$ and $m, k \ge 0$. Then $(b^m)^k = b^{mk}$.

Proof. Let $m \in \mathbb{Z}_{\geq 0}$. We will prove that $(b^m)^k = b^{mk}$ for all $k \in \mathbb{Z}_{\geq 0}$ by induction. When k = 0,

$$(b^m)^k = (b^m)^0 = 1 = b^0 = b^{m0} = b^{mk}$$

Suppose for some $k \in \mathbb{Z}_{\geq 0}$ that $(b^m)^k = b^{mk}$. Then

 $(b^{m})^{k+1} = (b^{m})^{k}(b^{m})$ = $b^{mk}b^{m}$ (by the induction hypothesis) = b^{mk+m} (by Proposition 4.6(ii)) = $b^{m(k+1)}$.

Proposition 4.11: For all $k \in \mathbb{N}$,

$$2\sum_{j=1}^{k} j = k(k+1).$$

Proof. We proceed by induction on $k \in \mathbb{N}$. When k = 1,

$$2\sum_{j=1}^{k} j = 2\sum_{j=1}^{1} j = 2 \cdot 1 = 1 \cdot (1+1) = k \cdot (k+1).$$

Suppose for some $k \in \mathbb{N}$ that

$$2\sum_{j=1}^{k} j = k \cdot (k+1).$$

Then

$$2\sum_{j=1}^{k+1} j = 2\left[\sum_{j=1}^{k} j + (k+1)\right]$$

= $2\sum_{j=1}^{k} j + 2(k+1)$
= $k(k+1) + 2(k+1)$ (by the induction hypothesis)
= $(k+1)(k+2)$
= $(k+1)((k+1)+1)$.

Proposition 4.A: Suppose a and b are integers such that $a \neq 0$ and $a \mid b$. Then there exists a unique integer j such that b = aj.

Proof. Suppose *a* and *b* are integers such that $a \mid b$. Then there exists $j \in \mathbb{Z}$ such that b = aj. Suppose for some $k \in \mathbb{Z}$ that b = ak. Then

aj = ak

and, since $a \neq 0$, Axiom 2.1 implies that k = j. Thus there is a unique integer j such that b = aj.

Proposition 4.8: For all $k \in \mathbb{N}$, $4^k > k$.

Proof. We proceed by induction on $k \in \mathbb{N}$. When k = 1,

$$4^k = 4^1 = 4 > 1 = k.$$

Suppose for some $k \in \mathbb{N}$ that $4^k > 1$. Then

 $4^{k+1} = 4^{k}4$ > $k \cdot 4$ (by the induction hypothesis and Proposition 4.D) = k + 3k $\geq k + 1$

since $3k \ge 3 \cdot 1 = 3 > 1$. Hence $4^{k+1} \ge k + 1$ as required.

Proposition 4.13: For
$$x \neq 1$$
 and $k \in \mathbb{Z}_{\geq 0}$, $\sum_{j=0}^{k} x^{j} = \frac{1 - x^{k+1}}{1 - x}$

Hint: Show that $(1 - x) \sum_{j=0}^{k} x^j = 1 - x^{k+1}$.

Proof. Since $x \neq 1$, the statement

$$\sum_{j=0}^{k} x^{j} = \frac{1 - x^{k+1}}{1 - x}$$

is equivalent to

$$(1-x)\sum_{j=0}^{k} x^{j} = 1 - x^{k+1}.$$

We will show that the latter statement holds for all $k \in \mathbb{Z}_{\geq 0}$ by induction. When k = 0,

$$(1-x)\sum_{j=0}^{k} x^{j} = (1-x)\sum_{j=0}^{0} x^{j} = (1-x)x^{0} = 1-x = 1-x^{1} = 1-x^{k+1}.$$

Suppose for some $k \in \mathbb{Z}_{\geq 0}$ that

$$(1-x)\sum_{j=0}^{k} x^{j} = 1 - x^{k+1}.$$

Then

$$(1-x)\sum_{j=0}^{k+1} x^{j} = (1-x)\sum_{j=0}^{k} x^{j} + (1-x)x^{k+1}$$

= 1 - x^{k+1} + (1 - x)x^{k+1} (by the induction hypothesis)
= 1 - x^{k+2}
= 1 - x^{(k+1)+1}.

Proposition 4.15(i): Let $m \in \mathbb{Z}$ and $(x_j)_{j=1}^{\infty}$ be a sequence in \mathbb{Z} . If then for all $k \in \mathbb{N}$

$$\sum_{j=1}^k m x_j = m \sum_{j=1}^k x_j.$$

Proof. We proceed by induction on $k \in \mathbb{N}$. When k = 1,

$$\sum_{j=1}^{k} mx_j = \sum_{j=1}^{1} mx_j = mx_1 = m \sum_{j=1}^{1} x_j = m \sum_{j=1}^{k} x_j.$$

Suppose for some $k \in \mathbb{N}$ that

$$\sum_{j=1}^k m x_j = m \sum_{j=1}^k x_j.$$

Then

$$\sum_{j=1}^{k+1} mx_j = \sum_{j=1}^k mx_j + mx_{k+1}$$
$$= m \sum_{j=1}^k x_j + mx_{k+1}$$
$$= m \left[\sum_{j=1}^k x_j + x_{k+1} \right]$$
$$= m \sum_{j=1}^{k+1} x_j.$$

(by the induction hypothesis)

Proposition 4.15(iii): Let $(x_j)_{j=1}^{\infty}$ be a sequence in \mathbb{Z} . If $x_j = n \in \mathbb{Z}$ for all $j \in \mathbb{N}$ then for all $k \in \mathbb{N}$

$$\sum_{j=1}^k x_j = kn.$$

Proof. We proceed by induction on $k \in \mathbb{N}$. When k = 1,

$$\sum_{j=1}^{k} x_j = \sum_{j=1}^{1} x_j = x_1 = n = 1 \cdot n = kn.$$

Suppose for some $k \in \mathbb{N}$ that $\sum_{j=1}^{k} x_j = kn$. Then

$$\sum_{j=1}^{k+1} x_j = \sum_{j=1}^k x_j + x_{k+1}$$

=
$$\sum_{j=1}^k x_j + x_{k+1}$$

=
$$kn + x_{k+1}$$
 (by the induction hypothesis)
=
$$kn + n$$

=
$$(k+1)n.$$

Proposition 4.16(ii): Let $(x_j)_{j=m}^{\infty}$ and $(y_j)_{j=m}^{\infty}$ be sequences in \mathbb{Z} . For all $a, b \in \mathbb{Z}$ such that $m \le a \le b$,

$$\sum_{j=a}^{b} (x_j + y_j) = \sum_{j=a}^{b} x_j + \sum_{j=a}^{b} y_j.$$

Proof. Let $a \in \mathbb{Z}_{\geq m}$. We will show that

$$\sum_{j=a}^{b} (x_j + y_j) = \sum_{j=a}^{b} x_j + \sum_{j=a}^{b} y_j.$$

for all $b \ge a$ by induction. When b = a,

$$\sum_{j=a}^{b} (x_j + y_j) = \sum_{j=a}^{a} (x_j + y_j) = x_a + y_a = \sum_{j=a}^{a} x_j + \sum_{j=a}^{a} y_j = \sum_{j=a}^{b} x_j + \sum_{j=a}^{b} y_j.$$

Suppose for some $b \ge a$ that

$$\sum_{j=a}^{b} (x_j + y_j) = \sum_{j=a}^{b} x_j + \sum_{j=a}^{b} y_j.$$

Then

$$\sum_{j=a}^{b+1} (x_j + y_j) = \sum_{j=a}^{b} (x_j + y_j) + x_{b+1} + y_{b+1}$$

= $\sum_{j=a}^{b} x_j + \sum_{j=a}^{b} y_j + x_{b+1} + y_{b+1}$ (by the induction hypothesis)
= $\sum_{j=a}^{b} x_j + x_{b+1} \sum_{j=a}^{b} y_j + y_{b+1}$
= $\sum_{j=a}^{b+1} x_j + \sum_{j=a}^{b+1} y_j$.

Proposition 4.18: Let $(x_j)_{j=1}^{\infty}$ and $(y_j)_{j=1}^{\infty}$ be sequences in \mathbb{Z} such that $x_j \leq y_j$ for all $j \in \mathbb{N}$. Then for all $k \in \mathbb{N}$,

$$\sum_{j=1}^k x_j \le \sum_{j=1}^k y_j.$$

Proof. We proceed by induction on $k \ge 1$. When k = 1,

$$\sum_{j=1}^{k} x_j = \sum_{j=1}^{1} x_j = x_1 \le y_1 = \sum_{j=1}^{1} y_j = \sum_{j=1}^{k} y_j.$$

Suppose for some $k \ge 1$ that

$$\sum_{j=1}^k x_j \le \sum_{j=1}^k y_j.$$

Then

$$\sum_{j=1}^{k+1} x_j = \sum_{j=1}^k x_j + x_{k+1}$$

$$\leq \sum_{j=1}^k y_j + x_{k+1}$$

$$\leq sum_{j=1}^k y_j + y_{k+1}$$

$$= sum_{j=1}^{k+1} y_j.$$

(by the induction hypothesis)