Proposition 4.5: For all $k \in \mathbb{Z}_{\geq 0}, k!\in \mathbb{N}$.
Proof. We proceed by induction on $k \geq 0$. When $k=0, k!=0!=1 \in \mathbb{N}$. This establishes the base case. Suppose for some $k \in \mathbb{Z}_{\geq 0}$ that $k!\in \mathbb{N}$. Since $k \geq 0$, $k+1 \geq 1 \in \mathbb{N}$. Since $k!\in \mathbb{N}$ as well,

$$
(k+1)!=k!(k+1) \in \mathbb{N} .
$$

Proposition 4.7 (i): For all $k \in \mathbb{N}, 5^{2 k}-1$ is divisible by 24.
Proof. We proceed by induction on $k \in \mathbb{N}$. Observe that when $k=0,5^{2 k}-1=$ $5^{0}-1=0$. Since $0 \mid 0$, the base case is established.
Suppose for some $k \in \mathbb{N}$ that $24 \mid 5^{2 k}-1$. Hence there exists an integer j such that $5^{2 k}-1=24 j$. Then

$$
\begin{aligned}
5^{2(k+1)}-1 & =5^{2 k} 5^{2}-1 \\
& =\left(5^{2 k}-1\right) 5^{2}+5^{2}-1 \\
& =24 j \cdot 25+24 \\
& =24(25 j+1) .
\end{aligned}
$$

Hence $24 \mid 5^{2(k+1)}-1$.

Proposition 4.6(iii): Let $b \in \mathbb{Z}$ and $m, k \geq 0$. Then $\left(b^{m}\right)^{k}=b^{m k}$.
Proof. Let $m \in \mathbb{Z}_{\geq 0}$. We will prove that $\left(b^{m}\right)^{k}=b^{m k}$ for all $k \in \mathbb{Z}_{\geq 0}$ by induction.
When $k=0$,

$$
\left(b^{m}\right)^{k}=\left(b^{m}\right)^{0}=1=b^{0}=b^{m 0}=b^{m k} .
$$

Suppose for some $k \in \mathbb{Z}_{\geq 0}$ that $\left(b^{m}\right)^{k}=b^{m k}$. Then

$$
\begin{array}{rlrl}
\left(b^{m}\right)^{k+1} & =\left(b^{m}\right)^{k}\left(b^{m}\right) & & \\
& =b^{m k} b^{m} & & \text { (by the induction hypothesis) } \\
& =b^{m k+m} & & \quad \text { (by Proposition 4.6(ii)) } \\
& =b^{m(k+1)} . & \square
\end{array}
$$

Proposition 4.11: For all $k \in \mathbb{N}$,

$$
2 \sum_{j=1}^{k} j=k(k+1) .
$$

Proof. We proceed by induction on $k \in \mathbb{N}$. When $k=1$,

$$
2 \sum_{j=1}^{k} j=2 \sum_{j=1}^{1} j=2 \cdot 1=1 \cdot(1+1)=k \cdot(k+1) .
$$

Suppose for some $k \in \mathbb{N}$ that

$$
2 \sum_{j=1}^{k} j=k \cdot(k+1)
$$

Then

$$
\begin{array}{rlr}
2 \sum_{j=1}^{k+1} j & =2\left[\sum_{j=1}^{k} j+(k+1)\right] \\
& =2 \sum_{j=1}^{k} j+2(k+1) \\
& =k(k+1)+2(k+1) \quad \text { (by the induction hypothesis) } \\
& =(k+1)(k+2) \\
& =(k+1)((k+1)+1) .
\end{array}
$$

Proposition 4.A: Suppose a and b are integers such that $a \neq 0$ and $a \mid b$. Then there exists a unique integer j such that $b=a j$.

Proof. Suppose a and b are integers such that $a \mid b$. Then there exists $j \in \mathbb{Z}$ such that $b=a j$. Suppose for some $k \in \mathbb{Z}$ that $b=a k$. Then

$$
a j=a k
$$

and, since $a \neq 0$, Axiom 2.1 implies that $k=j$. Thus there is a unique integer j such that $b=a j$.

Proposition 4.8: For all $k \in \mathbb{N}, 4^{k}>k$.
Proof. We proceed by induction on $k \in \mathbb{N}$. When $k=1$,

$$
4^{k}=4^{1}=4>1=k .
$$

Suppose for some $k \in \mathbb{N}$ that $4^{k}>1$. Then

$$
\begin{aligned}
4^{k+1} & =4^{k} 4 \\
& >k \cdot 4 \quad \text { (by the induction hypothesis and Proposition 4.D) } \\
& =k+3 k \\
& \geq k+1
\end{aligned}
$$

since $3 k \geq 3 \cdot 1=3>1$. Hence $4^{k+1} \geq k+1$ as required.

Proposition 4.13: For $x \neq 1$ and $k \in \mathbb{Z}_{\geq 0}, \sum_{j=0}^{k} x^{j}=\frac{1-x^{k+1}}{1-x}$.

Hint: Show that $(1-x) \sum_{j=0}^{k} x^{j}=1-x^{k+1}$.
Proof. Since $x \neq 1$, the statement

$$
\sum_{j=0}^{k} x^{j}=\frac{1-x^{k+1}}{1-x}
$$

is equivalent to

$$
(1-x) \sum_{j=0}^{k} x^{j}=1-x^{k+1} .
$$

We will show that the latter statement holds for all $k \in \mathbb{Z}_{\geq 0}$ by induction.
When $k=0$,

$$
(1-x) \sum_{j=0}^{k} x^{j}=(1-x) \sum_{j=0}^{0} x^{j}=(1-x) x^{0}=1-x=1-x^{1}=1-x^{k+1} .
$$

Suppose for some $k \in \mathbb{Z}_{\geq 0}$ that

$$
(1-x) \sum_{j=0}^{k} x^{j}=1-x^{k+1} .
$$

Then

$$
\begin{array}{rlr}
(1-x) \sum_{j=0}^{k+1} x^{j} & =(1-x) \sum_{j=0}^{k} x^{j}+(1-x) x^{k+1} & \\
& =1-x^{k+1}+(1-x) x^{k+1} &
\end{array}
$$

Proposition 4.15(i): Let $m \in \mathbb{Z}$ and $\left(x_{j}\right)_{j=1}^{\infty}$ be a sequence in \mathbb{Z}. If then for all $k \in \mathbb{N}$

$$
\sum_{j=1}^{k} m x_{j}=m \sum_{j=1}^{k} x_{j}
$$

Proof. We proceed by induction on $k \in \mathbb{N}$. When $k=1$,

$$
\sum_{j=1}^{k} m x_{j}=\sum_{j=1}^{1} m x_{j}=m x_{1}=m \sum_{j=1}^{1} x_{j}=m \sum_{j=1}^{k} x_{j} .
$$

Suppose for some $k \in \mathbb{N}$ that

$$
\sum_{j=1}^{k} m x_{j}=m \sum_{j=1}^{k} x_{j} .
$$

Then

$$
\begin{array}{rlr}
\sum_{j=1}^{k+1} m x_{j} & =\sum_{j=1}^{k} m x_{j}+m x_{k+1} \\
& =m \sum_{j=1}^{k} x_{j}+m x_{k+1} \quad \text { (by the induction hypothesis) } \\
& =m\left[\sum_{j=1}^{k} x_{j}+x_{k+1}\right] \\
& =m \sum_{j=1}^{k+1} x_{j} .
\end{array}
$$

Proposition 4.15(iii): Let $\left(x_{j}\right)_{j=1}^{\infty}$ be a sequence in \mathbb{Z}. If $x_{j}=n \in \mathbb{Z}$ for all $j \in \mathbb{N}$ then for all $k \in \mathbb{N}$

$$
\sum_{j=1}^{k} x_{j}=k n
$$

Proof. We proceed by induction on $k \in \mathbb{N}$. When $k=1$,

$$
\sum_{j=1}^{k} x_{j}=\sum_{j=1}^{1} x_{j}=x_{1}=n=1 \cdot n=k n
$$

Suppose for some $k \in \mathbb{N}$ that $\sum_{j=1}^{k} x_{j}=k n$. Then

$$
\begin{array}{rlr}
\sum_{j=1}^{k+1} x_{j} & =\sum_{j=1}^{k} x_{j}+x_{k+1} \\
& =\sum_{j=1}^{k} x_{j}+x_{k+1} \\
& =k n+x_{k+1} \\
& =k n+n \\
& =(k+1) n . & \\
\end{array}
$$

Proposition 4.16(ii): Let $\left(x_{j}\right)_{j=m}^{\infty}$ and $\left(y_{j}\right)_{j=m}^{\infty}$ be sequences in \mathbb{Z}. For all $a, b \in \mathbb{Z}$ such that $m \leq a \leq b$,

$$
\sum_{j=a}^{b}\left(x_{j}+y_{j}\right)=\sum_{j=a}^{b} x_{j}+\sum_{j=a}^{b} y_{j} .
$$

Proof. Let $a \in \mathbb{Z}_{\geq m}$. We will show that

$$
\sum_{j=a}^{b}\left(x_{j}+y_{j}\right)=\sum_{j=a}^{b} x_{j}+\sum_{j=a}^{b} y_{j} .
$$

for all $b \geq a$ by induction. When $b=a$,

$$
\sum_{j=a}^{b}\left(x_{j}+y_{j}\right)=\sum_{j=a}^{a}\left(x_{j}+y_{j}\right)=x_{a}+y_{a}=\sum_{j=a}^{a} x_{j}+\sum_{j=a}^{a} y_{j}=\sum_{j=a}^{b} x_{j}+\sum_{j=a}^{b} y_{j} .
$$

Suppose for some $b \geq a$ that

$$
\sum_{j=a}^{b}\left(x_{j}+y_{j}\right)=\sum_{j=a}^{b} x_{j}+\sum_{j=a}^{b} y_{j} .
$$

Then

$$
\begin{aligned}
\sum_{j=a}^{b+1}\left(x_{j}+y_{j}\right) & =\sum_{j=a}^{b}\left(x_{j}+y_{j}\right)+x_{b+1}+y_{b+1} \\
& =\sum_{j=a}^{b} x_{j}+\sum_{j=a}^{b} y_{j}+x_{b+1}+y_{b+1} \quad \text { (by the induction hypothesis) } \\
& =\sum_{j=a}^{b} x_{j}+x_{b+1} \sum_{j=a}^{b} y_{j}+y_{b+1} \\
& =\sum_{j=a}^{b+1} x_{j}+\sum_{j=a}^{b+1} y_{j} .
\end{aligned}
$$

Proposition 4.18: Let $\left(x_{j}\right)_{j=1}^{\infty}$ and $\left(y_{j}\right)_{j=1}^{\infty}$ be sequences in \mathbb{Z} such that $x_{j} \leq y_{j}$ for all $j \in \mathbb{N}$. Then for all $k \in \mathbb{N}$,

$$
\sum_{j=1}^{k} x_{j} \leq \sum_{j=1}^{k} y_{j} .
$$

Proof. We proceed by induction on $k \geq 1$. When $k=1$,

$$
\sum_{j=1}^{k} x_{j}=\sum_{j=1}^{1} x_{j}=x_{1} \leq y_{1}=\sum_{j=1}^{1} y_{j}=\sum_{j=1}^{k} y_{j} .
$$

Suppose for some $k \geq 1$ that

$$
\sum_{j=1}^{k} x_{j} \leq \sum_{j=1}^{k} y_{j}
$$

Then

$$
\begin{aligned}
\sum_{j=1}^{k+1} x_{j} & =\sum_{j=1}^{k} x_{j}+x_{k+1} \\
& \leq \sum_{j=1}^{k} y_{j}+x_{k+1} \quad \quad \text { (by the induction hypothesis) } \\
& \leq \operatorname{sum}_{j=1}^{k} y_{j}+y_{k+1} \\
& =\operatorname{sum}_{j=1}^{k+1} y_{j} .
\end{aligned}
$$

