Proposition 2.33: Let $A$ be a nonempty subset of $\mathbb{Z}$. Suppose for some $b \in \mathbb{Z}$ that $b \leq a$ for all $a \in A$. Then $A$ has a least element.

Proof. Let $A$ be a nonempty subset of $\mathbb{Z}$ that admits a lower bound $b \in \mathbb{Z}$. So $b \leq a$ for all $a \in A$. Let $m=-b+1$ and define

$$
C=\{a+m: a \in A\} .
$$

We claim that $C$ is a nonempty subset of $\mathbb{N}$.
To see that it is nonempty, let $a \in A$. We know such an $a$ exists since $A$ is nonempty. Then $a+m \in C$, so $C$ is nonempty.

We now wish to show that $C \subseteq \mathbb{N}$. Let $c \in C$. Then there exists $a \in A$ such that $c=a+m$. Since $a \in A, a \geq b$. So

$$
c=a+m \geq b+m=b+1-b=1 .
$$

So $c \geq 1$ and $c \in \mathbb{N}$. Hence $C \subseteq \mathbb{N}$.
Since $C$ is a nonempty collection of natural numbers, it admits a least element $c_{0}$. Since $c_{0} \in C$, there exists $a_{0} \in A$ such that $c_{0}=a_{0}+m$. We claim that $a_{0}$ is the least element of $A$. Since $a_{0} \in A$, we need only show that for all $a \in A, a_{0} \leq a$.

Let $a \in A$. Then $a+m \in C$, so $c_{0} \leq a+m$. Hence $a_{0}+m \leq a+m$ and consequently $a_{0} \leq a$ as desired.

Proposition HW7.A: Let $m, n, p \in \mathbb{Z}$ and suppose $p>0$. If $m p \leq n p$ then $m \leq n$.
Proof. Let $m, n, p \in \mathbb{Z}$ and suppose $p>0$. We will show that if $m>n$ then $m p>n p$, which is the contrapositive of the desired implication. Suppose $m>n$. Then, since $p>0$, Proposition 2.C implies $m p>n p$.

Proposition 5.4: Let $A, B, C$ be sets.
(i) $A=A$.
(ii) If $A=B$ then $B=A$.
(iii) If $A=B$ and $B=C$ then $A=C$.

Proof. Proof of i): By Proposition 5.1 i), $A \subseteq A$ and $A \subseteq A$, so $A=A$.
Proof of ii): Suppose $A=B$. Then $A \subseteq B$ and $B \subseteq A$ by definition. But then $B \subseteq A$ and $A \subseteq B$, so $B=A$.

Proof of (iii): Suppose $A=B$ and $B=C$ Then $A \subseteq B$ and $B \subseteq C$. Proposition 5.1(ii) then implies $A \subseteq C$. Similarly, since $C \subseteq B$ and $B \subseteq A, C \subseteq A$. Hence $A=C$.

Project 5.12 (partial): For each of the following double implications $P \Longleftrightarrow Q$ determine which of the implications $P \Longrightarrow Q$ or $Q \Longrightarrow P$, if any, are true. For the ones that are true, prove them. For the ones are are not true, provide a counterexample.
(ii) $C \subseteq A$ or $C \subseteq B \Longleftrightarrow C \subseteq(A \cup B)$
(iii) $C \subseteq A$ and $C \subseteq B \Longleftrightarrow C \subseteq(A \cap B)$

It is true that if $C \subseteq A$ or $C \subseteq B$ then $C \subseteq(A \cup B)$, but the converse is false.
To see that the converse is false, consider $A=\{1\}, B=\{2\}$ and $C=\{1,2\}$. Then $C \subseteq A \cup B$ But $C \nsubseteq A$ and $C \nsubseteq B$.

We now show that the remaining implications are true.
Proof. Let $A, B$, and $C$ be sets.
Suppose $C \subseteq A$ or $C \subseteq B$. Let $c \in C$. Then either $c \in A$ or $c \in B$. So $c \in A \cup B$. Hence $C \subseteq A \cup B$.

Suppose $C \subseteq A$ and $C \subseteq B$. Let $c \in C$. Then $c \in A$ and $c \in B$. Hence $c \in A \cap B$. So $C \subseteq A \cap B$.

Suppose $C \subseteq A \cap B$. Let $c \in C$. Then $c \in A \cap B$. Hence $c \in A$ and $c \in B$. Since $c$ is arbitrary, $C \subseteq A$ and $C \subseteq B$.

Proposition 5.15 (DeMorgan's Laws): Given two subsets $A, B \subseteq X$,
(i) $(A \cap B)^{c}=A^{c} \cup B^{c}$
(ii) $(A \cup B)^{c}=A^{c} \cap B^{c}$

Proof. We prove part (ii) first. Suppose $x \in(A \cup B)^{c}$. Then $x \in X$ and $x \notin(A \cup B)$. Since $x \notin A \cup B$, it is not true that $x \in A$ or $x \in B$. Hence $x \notin A$ and $x \notin B$. Since $x \in X$ we conclude that $x \in A^{c}$ and $x \in B^{c}$. So $x \in A^{c} \cup B^{c}$. Hence $(A \cup B)^{c} \subseteq A^{c} \cap B^{c}$.

Suppose $x \in A^{c} \cap B^{c}$. Then $x \in A^{c}$ and $x \in B^{c}$. So $x \in X, x \notin A$, and $x \notin B$. Hence $x \notin A \cup B$. Since $x \in X$, we conclude that $x \in(A \cup B)^{c}$. So $(A \cup B)^{c} \supseteq A^{c} \cap B^{c}$ and therefore $(A \cup B)^{c}=A^{c} \cap B^{c}$.

To prove part (i), we now apply part (ii) to $A^{c}$ and $B^{c}$, so

$$
\left(A^{c} \cup B^{c}\right)^{c}=\left(A^{c}\right)^{c} \cap\left(B^{c}\right)^{c} .
$$

By Corollary 5.14b, $\left(A^{c}\right)^{c}=A$ and $\left(B^{c}\right)^{c}=B$. So

$$
\left(A^{c} \cup B^{c}\right)^{c}=A \cap B
$$

Taking the complement of both sides, and applying Corollary 5.14 again to the lefthand side we conclude that

$$
A^{c} \cup B^{c}=(A \cap B)^{c} .
$$

Proposition 5.20: Let $A, B$, and $C$ be sets.
(i) $A \times(B \cup C)=(A \times B) \cup(A \times C)$
(ii) $A \times(B \cap C)=(A \times B) \cap(A \times C)$

Proof. (i) Suppose $x \in A \times(B \cup C)$. Then there exists $a \in A$ and $d \in(B \cup C)$ such that $x=(a, d)$. Since $d \in(B \cup C)$, it follows that $d \in B$ and $d \in C$. Since $a \in A$ and $d \in B, z=(a, d) \in A \times B$. Since $a \in A$ and $d \in C, z=(a, d) \in A \times C$. Hence $z \in(A \times B) \cap(A \times C)$. Therefore $A \times(B \cup C) \subseteq(A \times B) \cup(A \times C)$.

Suppose $x \in \in(A \times B) \cap(A \times C)$. Then $x=(a, d)$ for some $a \in A$ and where $d \in B$ and $d \in C$. Note that $d \in B \cap C$ and hence $x \in A \times(B \cap C)$. Hence $(A \times B) \cap(A \times C) \subseteq$ $A \times(B \cap C)$. Since $A \times(B \cup C) \subseteq(A \times B) \cup(A \times C)$ as well, $A \times(B \cup C)=(A \times B) \cup(A \times C)$.
(ii) Suppose $z \in A \times(B \cap C)$. Then there exists $a \in A$ and $d \in B \cap C$ such that $z=(a, d)$. Since $d \in B \cap C, d \in B$ and $d \in C$. Since $a \in A$ and $d \in B, z=(a, d) \in(A, B)$. Since $a \in A$ and $d \in C, z=(a, d) \in(A, C)$. Consequently $z \in(A \times B) \cap(A \times C)$ and $A \times(B \cap C) \subseteq(A \times B) \cap(A \times C)$.

Suppose $z \in(A \times B) \cap(A \times C)$. Then $z \in(A \times B)$ and $z \in(A \times C)$, so $z=(a, d)$ for some $a \in A$ and $d$ such that $d \in B$ and $d \in C$. But then $d \in B \cap C$ and hence $z=(a, d) \in A \times(B \cap C)$. So $(A \times B) \cap(A \times C) \subseteq A \times(B \cap C)$.

Since $A \times(B \cap C) \subseteq(A \times B) \cap(A \times C)$ and $(A \times B) \cap(A \times C) \subseteq A \times(B \cap C)$, $A \times(B \cap C)=(A \times B) \cap(A \times C)$.

