Project 2.35: Compute gcd(4, 6), gcd(7, 13), gcd(-4, 10) and gcd(-5, -15). You do **NOT** have to prove that you have found the gcd. But you do have to exhibit the integers *x* and *y* in the definition of the gcd.

Solution:

Observe

$$gcd(4,6) = 2 = 4 \cdot (-1) + 6 \cdot 1.$$

Other elements of $S_{4,6}$ include

$$4 = 4 \cdot 1 + 6 \cdot 0$$

$$6 = 4 \cdot 0 + 6 \cdot 1$$

$$14 = 4 \cdot (-1) + 6 \cdot 3$$

Observe

$$gcd(7, 13) = 1 = 7 \cdot 2 + 13 \cdot (-1).$$

Other elements of $S_{7,13}$ include

$$2 = 7 \cdot 2 + 13 \cdot (-2)$$

$$3 = 7 \cdot 3 + 13 \cdot (-3)$$

$$4 = 7 \cdot 4 + 13 \cdot (-4).$$

Observe

$$gcd(-4, 10) = 2 = (-4) \cdot 2 + 10 \cdot 1.$$

Other elements of $S_{-4,10}$ include

$$4 = (-4) \cdot 4 + 10 \cdot 2$$

$$6 = (-4) \cdot 6 + 10 \cdot 3$$

$$8 = (-4) \cdot 8 + 10 \cdot 4.$$

Finally, observe

$$gcd(-5, 15) = 5 = (-5) \cdot 2 + 15 \cdot (1).$$

Other elements of $S_{-5,15}$ include

$$10 = (-5) \cdot 4 + 15 \cdot 2$$

$$20 = (-5) \cdot 6 + 15 \cdot 3$$

$$30 = (-5) \cdot 8 + 15 \cdot 4$$

Project 3.1: Express each of the following statements using quantifiers.

(i) There exists a smallest natural number.

(ii) There does not exist a smallest integer.

- (iii) Every integer is the product of two integers.
- (iv) The equation $x^2 2y^2 = 3$ has an integer solution.

Solution:

- (i) $(\exists n \in \mathbb{N}) (\forall m \in \mathbb{N} \text{ such that}) n \le m$
- (ii) $(\forall n \in \mathbb{N})(\exists m \in \mathbb{N} \text{ such that}) m < n$
- (iii) $(\forall n \in \mathbb{N})(\exists m, p \in \mathbb{N} \text{ such that}) n = mp$
- (iv) $(\exists x, y, \in \mathbb{Z} \text{ such that}) x^2 2y^2 = 3.$

Project 3.7: Negate each of the following statements

- (i) Every cubic polynomial has a real root.
- (ii) G is normal and H is regular.
- (iii) $\exists !0$ such that $\forall x, x + 0 = x$
- (iv) The newspaper article was neither accurate nor entertaining.
- (v) If gcd(m, n) is odd then *m* or *n* is odd.
- (vi) H/N is a normal subgroup of G/N if and only if H is a normal subgroup of G
- (vii) For each $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \ge N$, $|a_n L| < \epsilon$

Solution:

- (i) There exists a cubic polynomial that does not have a real root.
- (ii) Either G is not normal or H is not regular.
- (iii) Either there is no integer 0 such that x + 0 = x for all $x \in \mathbb{Z}$, or there exist two distinct integers 0_1 and 0_2 such that $x + 0_1 = x$ and $x + 0_2 = x$ for all $x \in \mathbb{Z}$.
- (iv) The newspaper article was either accurate or entertaining.
- (v) There exist even integers m, n such that gcd(m, n) is odd.
- (vi) Either there exists H, G, and N such that H/N is a normal subgroup of G/N but H is not a normal subgroup of G, or there exists H, G, and N such that H is a normal subgroup of G but H/N is not a normal subgroup of G/N.
- (vii) There exists $\epsilon > 0$ such that for every $N \in \mathbb{N}$ there is $n \ge N$ and $|a_n L| \ge \epsilon$.