Project 2.35: Compute $\operatorname{gcd}(4,6), \operatorname{gcd}(7,13), \operatorname{gcd}(-4,10)$ and $\operatorname{gcd}(-5,-15)$. You do NOT have to prove that you have found the gcd. But you do have to exhibit the integers x and y in the definition of the gcd.

Solution:

Observe

$$
\operatorname{gcd}(4,6)=2=4 \cdot(-1)+6 \cdot 1 .
$$

Other elements of $S_{4,6}$ include

$$
\begin{aligned}
4 & =4 \cdot 1+6 \cdot 0 \\
6 & =4 \cdot 0+6 \cdot 1 \\
14 & =4 \cdot(-1)+6 \cdot 3 .
\end{aligned}
$$

Observe

$$
\operatorname{gcd}(7,13)=1=7 \cdot 2+13 \cdot(-1)
$$

Other elements of $S_{7,13}$ include

$$
\begin{aligned}
& 2=7 \cdot 2+13 \cdot(-2) \\
& 3=7 \cdot 3+13 \cdot(-3) \\
& 4=7 \cdot 4+13 \cdot(-4) .
\end{aligned}
$$

Observe

$$
\operatorname{gcd}(-4,10)=2=(-4) \cdot 2+10 \cdot 1
$$

Other elements of $S_{-4,10}$ include

$$
\begin{aligned}
& 4=(-4) \cdot 4+10 \cdot 2 \\
& 6=(-4) \cdot 6+10 \cdot 3 \\
& 8=(-4) \cdot 8+10 \cdot 4 .
\end{aligned}
$$

Finally, observe

$$
\operatorname{gcd}(-5,15)=5=(-5) \cdot 2+15 \cdot(1) .
$$

Other elements of $S_{-5,15}$ include

$$
\begin{aligned}
& 10=(-5) \cdot 4+15 \cdot 2 \\
& 20=(-5) \cdot 6+15 \cdot 3 \\
& 30=(-5) \cdot 8+15 \cdot 4 .
\end{aligned}
$$

Project 3.1: Express each of the following statements using quantifiers.
(i) There exists a smallest natural number.
(ii) There does not exist a smallest integer.
(iii) Every integer is the product of two integers.
(iv) The equation $x^{2}-2 y^{2}=3$ has an integer solution.

Solution:

(i) $(\exists n \in \mathbb{N})(\forall m \in \mathbb{N}$ such that) $n \leq m$
(ii) $(\forall n \in \mathbb{N})(\exists m \in \mathbb{N}$ such that) $m<n$
(iii) $(\forall n \in \mathbb{N})(\exists m, p \in \mathbb{N}$ such that) $n=m p$
(iv) $\left(\exists x, y, \in \mathbb{Z}\right.$ such that) $x^{2}-2 y^{2}=3$.

Project 3.7: Negate each of the following statements
(i) Every cubic polynomial has a real root.
(ii) G is normal and H is regular.
(iii) \exists !0 such that $\forall x, x+0=x$
(iv) The newspaper article was neither accurate nor entertaining.
(v) If $\operatorname{gcd}(m, n)$ is odd then m or n is odd.
(vi) H / N is a normal subgroup of G / N if and only if H is a normal subgroup of G
(vii) For each $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N,\left|a_{n}-L\right|<\epsilon$

Solution:

(i) There exists a cubic polynomial that does not have a real root.
(ii) Either G is not normal or H is not regular.
(iii) Either there is no integer 0 such that $x+0=x$ for all $x \in \mathbb{Z}$, or there exist two distinct integers 0_{1} and 0_{2} such that $x+0_{1}=x$ and $x+0_{2}=x$ for all $x \in \mathbb{Z}$.
(iv) The newspaper article was either accurate or entertaining.
(v) There exist even integers m, n such that $\operatorname{gcd}(m, n)$ is odd.
(vi) Either there exists H, G, and N such that H / N is a normal subgroup of G / N but H is not a normal subgroup of G, or there exists H, G, and N such that H is a normal subgroup of G but H / N is not a normal subgroup of G / N.
(vii) There exists $\epsilon>0$ such that for every $N \in \mathbb{N}$ there is $n \geq N$ and $\left|a_{n}-L\right| \geq \epsilon$.

