Project 2.35: Compute gcd(4, 6), gcd(7, 13), gcd(-4, 10) and gcd(-5, -15). You do **NOT** have to prove that you have found the gcd. Instead, show that the number you think of as gcd(a, b) belongs to the set $S_{a,b}$, and exhibit a couple of other elements of $S_{a,b}$. In all cases you should exhibit the integers x and y in the definition of the gcd.

Project 3.1: Express each of the following statements using quantifiers.

- (i) There exists a smallest natural number.
- (ii) There does not exist a smallest natural number.
- (iii) Every integer is the product of two integers.
- (iv) The equation $x^2 2y^2 = 3$ has an integer solution.

Project 3.7: Negate each of the following statements

- (i) Every cubic polynomial has a real root.
- (ii) G is normal and H is regular.
- (iii) $\exists !0$ such that $\forall x, x + 0 = x$
- (iv) The newspaper article was neither accurate nor entertaining.
- (v) If gcd(m, n) is odd then m or n is odd.
- (vi) H/N is a normal subgroup of G/N if and only if H is a normal subgroup of G
- (vii) For each $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $|a_n L| < \epsilon$