Project 2.35: Compute $\operatorname{gcd}(4,6), \operatorname{gcd}(7,13), \operatorname{gcd}(-4,10)$ and $\operatorname{gcd}(-5,-15)$. You do NOT have to prove that you have found the gcd. Instead, show that the number you think of as $\operatorname{gcd}(a, b)$ belongs to the set $S_{a, b}$, and exhibit a couple of other elements of $S_{a, b}$. In all cases you should exhibit the integers x and y in the definition of the gcd.

Project 3.1: Express each of the following statements using quantifiers.
(i) There exists a smallest natural number.
(ii) There does not exist a smallest natural number.
(iii) Every integer is the product of two integers.
(iv) The equation $x^{2}-2 y^{2}=3$ has an integer solution.

Project 3.7: Negate each of the following statements
(i) Every cubic polynomial has a real root.
(ii) G is normal and H is regular.
(iii) \exists ! 0 such that $\forall x, x+0=x$
(iv) The newspaper article was neither accurate nor entertaining.
(v) If $\operatorname{gcd}(m, n)$ is odd then m or n is odd.
(vi) H / N is a normal subgroup of G / N if and only if H is a normal subgroup of G
(vii) For each $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N,\left|a_{n}-L\right|<\epsilon$

