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Proposition HW5.1: The integer 1 is not divisible by 2. That is, 2 ∤ 1.

Proof. Suppose to produce a contradiction that 2 | 1. Then there is an integer j such that
1 = 2 j. Since 1, 2 ∈ N, Proposition 2.11 implies j ∈ N. Since 0 < 1 < 2 and 0 < 1 ≤ j,
Proposition 2.7(iii) implies

1 · 1 < 2 j.

That is, 1 < 2 j. Since 1 = 2 j as well, we have a contradiction of Proposition 2.8. □

Proposition HW5.2: Let A = {3x − 1 : x ∈ Z} and let B = {3x + 8 : x ∈ Z}. Then A = B.

Proof. Suppose a ∈ A. Then there is an integer x such that a = 3x − 1. Let y = x − 3, so
x = y + 3. Then

a = 3x − 1 = 3(y + 3) − 1 = 3y + 8.

Since y ∈ Z we conclude that a ∈ B. So A ⊆ B.

Suppose b ∈ B. Then there is an integer y such that b = 3y + 8. Let x = y + 3, so y = x − 3.
Then

b = 3y + 8 = 3(x − 3) + 8 = 3x − 1.

Since x ∈ Z we conclude that b ∈ A. So B ⊆ A.

Since A ⊆ B and B ⊆ A, A = B. □

Proposition 2.21: There are no integers x such that 0 < x < 1.

Proof. Suppose to the contrary that x ∈ Z and 0 < x < 1. Since x > 0, x ∈ N. By
Proposition 2.20, x ≥ 1. Since x < 1 as well, we have a contradiction of Proposition
2.8. □

Corollary 2.22: Let n ∈ Z. There are no integers x such that n < x < n + 1.

Proof. Let n ∈ N. Suppose to the contrary that there exists x ∈ Z such that n < x < n + 1.
Since n < x, Proposition 2.7(i) implies

0 < x − n.

Since x < n + 1, Proposition 2.7(i) implies that

x − n < 1.

So
0 < x − n < 1.

Since x − n ∈ Z, this is a contradiction of Proposition 2.21. □

Proposition 2.23: Let m, n ∈ N. If n is divisible by m, then m ≤ n.
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Proof. Let m, n ∈ N such that m | n. Since m | n, there is an integer j such that

n = jm.

Since n ∈ N and m ∈ N, Proposition 2.11 implies that j ∈ N. Proposition 2.20 then implies
that j ≥ 1. Since m ∈ N, m > 0. So we may apply Proposition 2.D to the inequality j ≥ 1
to find m j ≥ 1 · m = m. Since n = m j, we conclude that n ≥ m. □

Proposition 2.24: For all k ∈ N, k2 + 1 > k.

Proof. We proceed by induction on k. When k = 1, k2 + 1 = 2 > 1 = k. Suppose for some
n ∈ N that n2 + 1 > n. Then

(n + 1)2 + 1 = n2 + 2n + 2

> n2 + 2 by Prop. 2.7(i), since 2n > 0

= n2 + 1 + 1

> n + 1 since n2 + 1 > n.

□

Proposition 2.27: For all k ∈ Z such that k ≥ 2, k2 < k3.

Proof. We proceed by induction on k ≥ 2. When k = 2, k2 = 4 < 8 = k3. Suppose for
some n ∈ N that n2 < n3. Then

(n + 1)3 = n3 + 3n2 + 3n + 1

= (n2 + 2n + 1) + n3 + n2 + n

= (n + 1)2 + n3 + n2 + n.

Since n ∈ N, Axiom 2.1(ii) implies that n2 ∈ N. Since n ∈ N, Axiom 2.1(ii) implies that
n3 = n2 · n ∈ N. Hence n3 + n2 + n ∈ N by two applications of Axiom 2.1(ii). So

(n + 1)3 = (n + 1)2 + n3 + n2 + n > (n + 1)2

by Proposition 2.7(i). □

Notice that the induction step in the proof above never used the induction hypothesis! This
is a hint that we don’t need to use induction. Here’s a non-inductive proof.

Proof. Let k ∈ Z such that k ≥ 2. Then k ≥ 2 > 1 > 0. In particular, k2 > 0 since k ∈ N.
Now 0 < 1 < k and 0 < k2 so Proposition 2.7(iii) implies

k3 = k2 · k > k2 · 1 = k2.

□
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