Proposition HW5.1: The integer 1 is not divisible by 2 . That is, $2 \nmid 1$.
Proof. Suppose to produce a contradiction that $2 \mid 1$. Then there is an integer j such that $1=2 j$. Since $1,2 \in \mathbb{N}$, Proposition 2.11 implies $j \in \mathbb{N}$. Since $0<1<2$ and $0<1 \leq j$, Proposition 2.7(iii) implies

$$
1 \cdot 1<2 j .
$$

That is, $1<2 j$. Since $1=2 j$ as well, we have a contradiction of Proposition 2.8.

Proposition HW5.2: Let $A=\{3 x-1: x \in \mathbb{Z}\}$ and let $B=\{3 x+8: x \in \mathbb{Z}\}$. Then $A=B$.
Proof. Suppose $a \in A$. Then there is an integer x such that $a=3 x-1$. Let $y=x-3$, so $x=y+3$. Then

$$
a=3 x-1=3(y+3)-1=3 y+8 .
$$

Since $y \in \mathbb{Z}$ we conclude that $a \in B$. So $A \subseteq B$.
Suppose $b \in B$. Then there is an integer y such that $b=3 y+8$. Let $x=y+3$, so $y=x-3$. Then

$$
b=3 y+8=3(x-3)+8=3 x-1 .
$$

Since $x \in \mathbb{Z}$ we conclude that $b \in A$. So $B \subseteq A$.
Since $A \subseteq B$ and $B \subseteq A, A=B$.

Proposition 2.21: There are no integers x such that $0<x<1$.

Proof. Suppose to the contrary that $x \in \mathbb{Z}$ and $0<x<1$. Since $x>0, x \in \mathbb{N}$. By Proposition 2.20, $x \geq 1$. Since $x<1$ as well, we have a contradiction of Proposition 2.8.

Corollary 2.22: Let $n \in \mathbb{Z}$. There are no integers x such that $n<x<n+1$.
Proof. Let $n \in \mathbb{N}$. Suppose to the contrary that there exists $x \in \mathbb{Z}$ such that $n<x<n+1$. Since $n<x$, Proposition 2.7(i) implies

$$
0<x-n .
$$

Since $x<n+1$, Proposition 2.7(i) implies that

$$
x-n<1 .
$$

So

$$
0<x-n<1
$$

Since $x-n \in \mathbb{Z}$, this is a contradiction of Proposition 2.21.

Proposition 2.23: Let $m, n \in \mathbb{N}$. If n is divisible by m, then $m \leq n$.

Proof. Let $m, n \in \mathbb{N}$ such that $m \mid n$. Since $m \mid n$, there is an integer j such that

$$
n=j m .
$$

Since $n \in \mathbb{N}$ and $m \in \mathbb{N}$, Proposition 2.11 implies that $j \in \mathbb{N}$. Proposition 2.20 then implies that $j \geq 1$. Since $m \in \mathbb{N}, m>0$. So we may apply Proposition 2 .D to the inequality $j \geq 1$ to find $m j \geq 1 \cdot m=m$. Since $n=m j$, we conclude that $n \geq m$.

Proposition 2.24: For all $k \in \mathbb{N}, k^{2}+1>k$.
Proof. We proceed by induction on k. When $k=1, k^{2}+1=2>1=k$. Suppose for some $n \in \mathbb{N}$ that $n^{2}+1>n$. Then

$$
\begin{aligned}
(n+1)^{2}+1 & =n^{2}+2 n+2 & & \\
& >n^{2}+2 & & \text { by Prop. 2.7(i), since } 2 n>0 \\
& =n^{2}+1+1 & & \\
& >n+1 & & \text { since } n^{2}+1>n .
\end{aligned}
$$

Proposition 2.27: For all $k \in \mathbb{Z}$ such that $k \geq 2, k^{2}<k^{3}$.
Proof. We proceed by induction on $k \geq 2$. When $k=2, k^{2}=4<8=k^{3}$. Suppose for some $n \in \mathbb{N}$ that $n^{2}<n^{3}$. Then

$$
\begin{aligned}
(n+1)^{3} & =n^{3}+3 n^{2}+3 n+1 \\
& =\left(n^{2}+2 n+1\right)+n^{3}+n^{2}+n \\
& =(n+1)^{2}+n^{3}+n^{2}+n .
\end{aligned}
$$

Since $n \in \mathbb{N}$, Axiom 2.1(ii) implies that $n^{2} \in \mathbb{N}$. Since $n \in \mathbb{N}$, Axiom 2.1(ii) implies that $n^{3}=n^{2} \cdot n \in \mathbb{N}$. Hence $n^{3}+n^{2}+n \in \mathbb{N}$ by two applications of Axiom 2.1(ii). So

$$
(n+1)^{3}=(n+1)^{2}+n^{3}+n^{2}+n>(n+1)^{2}
$$

by Proposition 2.7(i).
Notice that the induction step in the proof above never used the induction hypothesis! This is a hint that we don't need to use induction. Here's a non-inductive proof.

Proof. Let $k \in \mathbb{Z}$ such that $k \geq 2$. Then $k \geq 2>1>0$. In particular, $k^{2}>0$ since $k \in \mathbb{N}$. Now $0<1<k$ and $0<k^{2}$ so Proposition 2.7(iii) implies

$$
k^{3}=k^{2} \cdot k>k^{2} \cdot 1=k^{2} .
$$

