Proposition HW5.1: The integer 1 is not divisible by 2. That is, $2 \nmid 1$.

Proof. Suppose to produce a contradiction that 2 | 1. Then there is an integer j such that 1 = 2j. Since $1, 2 \in \mathbb{N}$, Proposition 2.11 implies $j \in \mathbb{N}$. Since 0 < 1 < 2 and $0 < 1 \leq j$, Proposition 2.7(iii) implies

$$1 \cdot 1 < 2j.$$

That is, 1 < 2j. Since 1 = 2j as well, we have a contradiction of Proposition 2.8.

Proposition HW5.2: Let $A = \{3x - 1 : x \in \mathbb{Z}\}$ and let $B = \{3x + 8 : x \in \mathbb{Z}\}$. Then A = B.

Proof. Suppose $a \in A$. Then there is an integer x such that a = 3x - 1. Let y = x - 3, so x = y + 3. Then

$$a = 3x - 1 = 3(y + 3) - 1 = 3y + 8.$$

Since $y \in \mathbb{Z}$ we conclude that $a \in B$. So $A \subseteq B$.

Suppose $b \in B$. Then there is an integer y such that b = 3y + 8. Let x = y + 3, so y = x - 3. Then

$$b = 3y + 8 = 3(x - 3) + 8 = 3x - 1.$$

Since $x \in \mathbb{Z}$ we conclude that $b \in A$. So $B \subseteq A$.

Since $A \subseteq B$ and $B \subseteq A$, A = B.

Proposition 2.21: There are no integers *x* such that 0 < x < 1.

Proof. Suppose to the contrary that $x \in \mathbb{Z}$ and 0 < x < 1. Since x > 0, $x \in \mathbb{N}$. By Proposition 2.20, $x \ge 1$. Since x < 1 as well, we have a contradiction of Proposition 2.8.

Corollary 2.22: Let $n \in \mathbb{Z}$. There are no integers *x* such that n < x < n + 1.

Proof. Let $n \in \mathbb{N}$. Suppose to the contrary that there exists $x \in \mathbb{Z}$ such that n < x < n + 1. Since n < x, Proposition 2.7(i) implies

$$0 < x - n.$$

Since x < n + 1, Proposition 2.7(i) implies that

$$x - n < 1$$

So

$$0 < x - n < 1.$$

Since $x - n \in \mathbb{Z}$, this is a contradiction of Proposition 2.21.

Proposition 2.23: Let $m, n \in \mathbb{N}$. If *n* is divisible by *m*, then $m \le n$.

Proof. Let $m, n \in \mathbb{N}$ such that $m \mid n$. Since $m \mid n$, there is an integer *j* such that

$$n = jm.$$

Since $n \in \mathbb{N}$ and $m \in \mathbb{N}$, Proposition 2.11 implies that $j \in \mathbb{N}$. Proposition 2.20 then implies that $j \ge 1$. Since $m \in \mathbb{N}$, m > 0. So we may apply Proposition 2.D to the inequality $j \ge 1$ to find $mj \ge 1 \cdot m = m$. Since n = mj, we conclude that $n \ge m$.

Proposition 2.24: For all $k \in \mathbb{N}$, $k^2 + 1 > k$.

Proof. We proceed by induction on k. When k = 1, $k^2 + 1 = 2 > 1 = k$. Suppose for some $n \in \mathbb{N}$ that $n^2 + 1 > n$. Then

$$(n + 1)^2 + 1 = n^2 + 2n + 2$$

> $n^2 + 2$ by Prop. 2.7(i), since $2n > 0$
= $n^2 + 1 + 1$
> $n + 1$ since $n^2 + 1 > n$.

_	

Proposition 2.27: For all $k \in \mathbb{Z}$ such that $k \ge 2$, $k^2 < k^3$.

Proof. We proceed by induction on $k \ge 2$. When k = 2, $k^2 = 4 < 8 = k^3$. Suppose for some $n \in \mathbb{N}$ that $n^2 < n^3$. Then

$$(n+1)^3 = n^3 + 3n^2 + 3n + 1$$

= $(n^2 + 2n + 1) + n^3 + n^2 + n$
= $(n+1)^2 + n^3 + n^2 + n$.

Since $n \in \mathbb{N}$, Axiom 2.1(ii) implies that $n^2 \in \mathbb{N}$. Since $n \in \mathbb{N}$, Axiom 2.1(ii) implies that $n^3 = n^2 \cdot n \in \mathbb{N}$. Hence $n^3 + n^2 + n \in \mathbb{N}$ by two applications of Axiom 2.1(ii). So

$$(n+1)^3 = (n+1)^2 + n^3 + n^2 + n > (n+1)^2$$

by Proposition 2.7(i).

Notice that the induction step in the proof above never used the induction hypothesis! This is a hint that we don't need to use induction. Here's a non-inductive proof.

Proof. Let $k \in \mathbb{Z}$ such that $k \ge 2$. Then $k \ge 2 > 1 > 0$. In particular, $k^2 > 0$ since $k \in \mathbb{N}$. Now 0 < 1 < k and $0 < k^2$ so Proposition 2.7(iii) implies

$$k^3 = k^2 \cdot k > k^2 \cdot 1 = k^2.$$