Proposition HW5.1: The integer 1 is not divisible by 2 . That is, $2 \nmid 1$.
Proof. Your proof goes here.

Proposition HW5.2: Let $A=\{3 x-1: x \in \mathbb{Z}\}$ and let $B=\{3 x+8: x \in \mathbb{Z}\}$. Then $A=B$.
Proof. Your proof goes here. This proposition is admittedly not very interesting; I have assigned so you can practice showing that two sets are the same. Follow the template from our proof in class of Proposition 2.13.

Proposition 2.21: There are no integers x such that $0<x<1$.

Corollary 2.22: Let $n \in \mathbb{Z}$. There are no integers x such that $n<x<n+1$.

Proposition 2.23: Let $m, n \in \mathbb{N}$. If n is divisible by m, then $m \leq n$.

Proposition 2.24: For all $k \in \mathbb{N}, k^{2}+1>k$.

Proposition 2.27: For all $k \in \mathbb{Z}$ such that $k \geq 2, k^{2}<k^{3}$.

Project 2.35: Compute $\operatorname{gcd}(4,6), \operatorname{gcd}(7,13), \operatorname{gcd}(-4,10)$ and $\operatorname{gcd}(-5,-15)$. You do NOT have to prove that you have found the gcd. But you do have to exhibit the integers x and y in the definition of the gcd.

