Proposition HW5.1: The integer 1 is not divisible by 2. That is, $2 \nmid 1$.

Proof. Your proof goes here.

Proposition HW5.2: Let $A = \{3x - 1 : x \in \mathbb{Z}\}$ and let $B = \{3x + 8 : x \in \mathbb{Z}\}$. Then A = B.

Proof. Your proof goes here. This proposition is admittedly not very interesting; I have assigned so you can practice showing that two sets are the same. Follow the template from our proof in class of Proposition 2.13. \Box

Proposition 2.21: There are no integers x such that 0 < x < 1.

Corollary 2.22: Let $n \in \mathbb{Z}$. There are no integers x such that n < x < n + 1.

Proposition 2.23: Let $m, n \in \mathbb{N}$. If *n* is divisible by *m*, then $m \le n$.

Proposition 2.24: For all $k \in \mathbb{N}$, $k^2 + 1 > k$.

Proposition 2.27: For all $k \in \mathbb{Z}$ such that $k \ge 2$, $k^2 < k^3$.

Project 2.35: Compute gcd(4, 6), gcd(7, 13), gcd(-4, 10) and gcd(-5, -15). You do **NOT** have to prove that you have found the gcd. But you do have to exhibit the integers *x* and *y* in the definition of the gcd.