Proposition 2.33: Let A be a nonempty subset of Z. Suppose for some $b \in \mathbb{Z}$ that $b \leq a$ for all $a \in A$. Then A has a least element.

Hint: Proving the Well-Ordering Principle was hard work. But proving this proposition should not be. Just reformulate it into a form where you can apply the Well-Ordering Principle.

Proposition 2.E: Suppose $n, m \in \mathbb{Z}$ and $n>m$. Then $-n<-m$.
Proof. Your proof goes here.

Proposition 2.G: Suppose $n, m, p \in \mathbb{Z}, n>m$, and $p<0$. Then $p n<p m$.
Proof. Your proof goes here. Be lazy!

Proposition 2.10: The equation $x^{2}=-1$ has no solution in \mathbb{Z}.
Proof. Your proof goes here.

Proposition 2.11: Suppose $m \in \mathbb{N}$ and and $n \in \mathbb{Z}$. If $m n \in \mathbb{N}$ then $n \in \mathbb{N}$.
Proof. Your proof goes here.

Proposition 2.20: For all $n \in \mathbb{N}, n \geq 1$.

Proof. Your proof goes here.

