Proposition 2.20: For all $n \in \mathbb{N}$, $n \ge 1$.

Proof. Your proof goes here.

Proposition 2.33: Let *A* be a nonempty subset of *Z*. Suppose for some $b \in \mathbb{Z}$ that $b \le a$ for all $a \in A$. Then *A* has a least element.

Hint: Proving the Well-Ordering Principle was hard work. But proving this proposition should not be. Just reformulate it into a form where you can apply the Well-Ordering Principle.

Proposition 2.E: Suppose $n, m \in \mathbb{Z}$ and n > m. Then -n < -m.

Proof. Your proof goes here.

□

Proposition 2.G: Suppose $n, m, p \in \mathbb{Z}, n > m$, and p < 0. Then pn < pm.

Proof. Your proof goes here. Be lazy!

□

Proposition 2.10: The equation $x^2 = -1$ has no solution in \mathbb{Z} .

Proof. Your proof goes here.

□

Proposition 2.11: Suppose $m \in \mathbb{N}$ and and $n \in \mathbb{Z}$. If $mn \in \mathbb{N}$ then $n \in \mathbb{N}$.

Proof. Your proof goes here.