Proposition 1.22:

(i) For all $m \in \mathbb{Z}$, -(-m) = m.

Proof. Let $m \in \mathbb{Z}$. Notice that

$$(-m) + m = 0$$

by Proposition 1.8. Also,

(-m) + (-(-m)) = 0

by the definition of additive inverses. Hence

$$(-m) + m = (-m) + (-(-m)).$$

Proposition 1.9 then implies that

$$m = -(-m).$$

_	_	

Proposition 1.25(iii): For all $m, n \in \mathbb{Z}$,

$$(-m) \cdot n = m \cdot (-n) = -(m \cdot n).$$

Proof. Let $m, n \in \mathbb{Z}$. Then

$(-m) \cdot n = ((-1)m) \cdot n$	by Proposition 1.25(ii)	
$= (-1)(m \cdot n)$	by commutativity	
$= -(m \cdot n)$	by Proposition 1.25(ii).	

Similarly,

$$(-n)\cdot m = -(n\cdot m).$$

Applying multiplicative commutativity to both sids of this equation we see

$$m \cdot (-n) = -(m \cdot n).$$

Hence $(-m) \cdot n = -(m \cdot n) = m \cdot (-n)$.

Proposition 2.3: $1 \in \mathbb{N}$.

Proof. Suppose to the contrary that $1 \notin \mathbb{N}$. Then, by Axiom 2.1(iv), either 1 = 0 or $-1 \in \mathbb{N}$. Since Axiom 1.3 tells us $1 \neq 0$, it must be that $-1 \in \mathbb{N}$. But then, from Axiom 2.1(ii), we know

$$(-1) \cdot (-1) \in \mathbb{N}.$$

Since $(-1) \cdot (-1) = 1 \cdot 1 = 1$ (Proposition 1.20), we conclude that $1 \in \mathbb{N}$. Since $1 \notin \mathbb{N}$ we have a contradiction.

Proposition 2.5: For each $n \in \mathbb{N}$ there exists $m \in \mathbb{N}$ such that m > n.

Proof. Let $n \in \mathbb{N}$. Let m = n + 1. Since $n \in \mathbb{N}$ and $1 \in \mathbb{N}$, Axiom 2.1(i) implies $m \in \mathbb{N}$. Also,

$$m - n = (n + 1) - n = 1.$$

Since $1 \in \mathbb{N}$, m > n.

Proposition HW 2.1: Let *m*, *n*, and $p \in \mathbb{Z}$. If m < n and p > 0 then

$$mp < np$$
.

Proof. Let *m*, *n*, and $p \in \mathbb{Z}$ such that m < n and p > 0. Then $n - m \in \mathbb{N}$ and $p = p - 0 \in \mathbb{N}$. Hence, by Axiom 2.1(ii), $(n - m)p \in \mathbb{N}$. But

$$(n-m)(p) = np - mp.$$

Hence $np - mp \in \mathbb{N}$ and therefore np > mp.

Proposition 2.9: Let $m \in \mathbb{Z}$. If $m \neq 0$ then $m^2 \in \mathbb{N}$.

Proof. Suppose $m \in \mathbb{Z}$ and $m \neq 0$. Axiom 2.1(iv) implies that either $m \in \mathbb{N}$ or $-m \in \mathbb{N}$.

Suppose $m \in \mathbb{N}$. Then Axiom 2.1(ii) implies $m^2 = m \cdot m \in \mathbb{N}$.

On the other hand, suppose $-m \in \mathbb{N}$. Then by Proposition 1.20 and Axiom 2.1(ii),

$$m^2 = m \cdot m = (-m) \cdot (-m) \in \mathbb{N}.$$

Hence, in both cases, $m^2 \in \mathbb{N}$.