Proposition 1.22:

(i) For all $m \in \mathbb{Z},-(-m)=m$.

Proof. Let $m \in \mathbb{Z}$. Notice that

$$
(-m)+m=0
$$

by Proposition 1.8. Also,

$$
(-m)+(-(-m))=0
$$

by the definition of additive inverses. Hence

$$
(-m)+m=(-m)+(-(-m)) .
$$

Proposition 1.9 then implies that

$$
m=-(-m)
$$

Proposition 1.25(iii): For all $m, n \in \mathbb{Z}$,

$$
(-m) \cdot n=m \cdot(-n)=-(m \cdot n)
$$

Proof. Let $m, n \in \mathbb{Z}$. Then

$$
\begin{aligned}
(-m) \cdot n & =((-1) m) \cdot n & & \text { by Proposition } 1.25(\mathrm{ii}) \\
& =(-1)(m \cdot n) & & \text { by commutativity } \\
& =-(m \cdot n) & & \text { by Proposition } 1.25(\mathrm{ii}) .
\end{aligned}
$$

Similarly,

$$
(-n) \cdot m=-(n \cdot m)
$$

Applying multiplicative commutativity to both sids of this equation we see

$$
m \cdot(-n)=-(m \cdot n)
$$

Hence $(-m) \cdot n=-(m \cdot n)=m \cdot(-n)$.

Proposition 2.3: $1 \in \mathbb{N}$.
Proof. Suppose to the contrary that $1 \notin \mathbb{N}$. Then, by Axiom 2.1(iv), either $1=0$ or $-1 \in \mathbb{N}$. Since Axiom 1.3 tells us $1 \neq 0$, it must be that $-1 \in \mathbb{N}$. But then, from Axiom 2.1(ii), we know

$$
(-1) \cdot(-1) \in \mathbb{N} .
$$

Since $(-1) \cdot(-1)=1 \cdot 1=1$ (Proposition 1.20), we conclude that $1 \in \mathbb{N}$. Since $1 \notin \mathbb{N}$ we have a contradiction.

Proposition 2.5: For each $n \in \mathbb{N}$ there exists $m \in \mathbb{N}$ such that $m>n$.
Proof. Let $n \in \mathbb{N}$. Let $m=n+1$. Since $n \in \mathbb{N}$ and $1 \in \mathbb{N}$, Axiom 2.1(i) implies $m \in \mathbb{N}$. Also,

$$
m-n=(n+1)-n=1 .
$$

Since $1 \in \mathbb{N}, m>n$.

Proposition HW 2.1: Let m, n, and $p \in \mathbb{Z}$. If $m<n$ and $p>0$ then

$$
m p<n p .
$$

Proof. Let m, n, and $p \in \mathbb{Z}$ such that $m<n$ and $p>0$. Then $n-m \in \mathbb{N}$ and $p=p-0 \in \mathbb{N}$. Hence, by Axiom 2.1(ii), $(n-m) p \in \mathbb{N}$. But

$$
(n-m)(p)=n p-m p .
$$

Hence $n p-m p \in \mathbb{N}$ and therefore $n p>m p$.

Proposition 2.9: Let $m \in \mathbb{Z}$. If $m \neq 0$ then $m^{2} \in \mathbb{N}$.

Proof. Suppose $m \in \mathbb{Z}$ and $m \neq 0$. Axiom 2.1(iv) implies that either $m \in \mathbb{N}$ or $-m \in \mathbb{N}$.

Suppose $m \in \mathbb{N}$. Then Axiom 2.1(ii) implies $m^{2}=m \cdot m \in \mathbb{N}$.
On the other hand, suppose $-m \in \mathbb{N}$. Then by Proposition 1.20 and Axiom 2.1(ii),

$$
m^{2}=m \cdot m=(-m) \cdot(-m) \in \mathbb{N} .
$$

Hence, in both cases, $m^{2} \in \mathbb{N}$.

