For this homework, the rules are as follows:

- For questions from Chapter 1, you do not need to write down justifications involving Axioms 1.1-1.4. But you must write your steps so that only one thing is being used at a time.
- For questions from Chapter 2, you may write your arguments using familiar rules of arithmetic so long as you know how you would convert your argument into a formal one using the techniques of Chapter 1. If in doubt, write out the argument, and I can let you know if the argument is correct.

Proposition 1.22:

(i) For all $m \in \mathbb{Z},-(-m)=m$.

Proof. Your proof goes here.

Proposition 1.25(iii): For all $m, n \in \mathbb{Z}$,

$$
(-m) \cdot n=m \cdot(-n)=-(m \cdot n) .
$$

Proof. Your proof goes here.
For full credit on this one, you should base your proof on Proposition 1.25(ii).

Proposition 1.27(v): For all $m, n, p \in \mathbb{Z}$

$$
(m-n) \cdot p=m p-n p .
$$

Proof. Your proof goes here.

Proposition 2.3: $1 \in \mathbb{N}$.

Proof. Your proof goes here.
Hint: Use proof by contradiction. The first line of the proof will be:
"Suppose to the contrary that $1 \notin \mathbb{N}$."
Take advantage of Proposition 2.2 and show that this leads to a contradiction.

Proposition 2.5: For each $n \in \mathbb{N}$ there exists $m \in \mathbb{N}$ such that $m>n$.
Proof. Your proof goes here.

Proposition HW 2.1: Let m, n, and $p \in \mathbb{Z}$. If $m<n$ and $p>0$ then

$$
m p<n p .
$$

Proof. Your proof goes here.

Proposition 2.9: Let $m \in \mathbb{Z}$. If $m \neq 0$ then $m^{2} \in \mathbb{N}$.
Proof. Your proof goes here.

