Proposition 1.16: If m and n are even integers, then so is $m+n$.

Proof. Let m and n be even integers. To show that $m+n$ is even we must show that there exists an integer j such that

$$
\begin{equation*}
m+n=j \cdot 2 . \tag{1}
\end{equation*}
$$

Since m and n are even, there are integers p and q such that

$$
m=p \cdot 2 \quad \text { and } \quad n=q \cdot 2 .
$$

So

$$
\begin{aligned}
m+n & =p \cdot 2+q \cdot 2 \\
& =(p+q) \cdot 2
\end{aligned}
$$

by distributivity. Hence equation (1) is satisfied with $j=p+q$, and $m+n$ is even.

Proposition 1.17(ii) (Our version): If m is an integer and m is divisible by 0 , then $m=0$.
Proof. Suppose that m is an integer that is divisible by 0 . So there is an integer j such that

$$
m=j \cdot 0
$$

Proposition 1.14 implies $j \cdot 0=0$. Hence $m=0$.

Proposition 1.18: Let $x \in \mathbb{Z}$. If x has the property that for all $m \in \mathbb{Z}, m x=m$, then $x=1$.
Proof. Suppose x is an integer such that $m x=m$ for all $m \in \mathbb{Z}$. In particular, this equation is satisfied with $m=1$ and hence

$$
1 \cdot x=1 .
$$

Proposition 1.7 implies $1 \cdot x=x$, so $x=1$.

Proposition 1.19: Let $x \in \mathbb{Z}$. If x has the property that for some nonzero $m \in \mathbb{Z}, m x=m$, then $x=1$.

Proof. Suppose x is an integer such that for some nonzero $m \in \mathbb{Z}, m x=m$. From Axiom 1.3 we know that $m=m \cdot 1$. Hence

$$
m \cdot x=m \cdot 1 .
$$

Since $m \neq 0$, we conclude from Axiom 1.5 that $x=1$.

Proposition 1.24: Let $x \in \mathbb{Z}$. If $x \cdot x=x$ then $x=0$ or $x=1$.

Proof. Suppose x is an integer such that $x \cdot x=x$. To show that either $x=0$ or $x=1$, it is enough to show that if $x \neq 0$, then $x=1$. So suppose $x \neq 0$. Then

$$
\begin{aligned}
x \cdot x & =x \\
& =x \cdot 1
\end{aligned}
$$

by Axiom 1.3. Since $x \neq 0$, Axiom 1.5 implies

$$
x=1 .
$$

Proposition HW2.1: If $m, n \in \mathbb{Z}$ and $m+n=0$ then $n=-m$.
Proof. Suppose $m, n \in \mathbb{Z}$ and $m+n=0$. From Axiom 1.4 we know that $m+(-m)=0$. But then

$$
m+n=m+(-m)
$$

and Proposition 1.9 implies $n=-m$.

Proposition 1.25(i): For all $m, n \in \mathbb{Z}$

$$
-(m+n)=(-m)+(-n) .
$$

Proof. Let $m, n \in \mathbb{Z}$. Then

$$
\begin{aligned}
(m+n)+[(-m)+(-n)] & =[(m+n)+(-m)]+(-n) & & \text { by additive associativity } \\
& =[m+(n+(-m))]+(-n) & & \text { by additive associativity } \\
& =[m+((-m)+n)]+(-n) & & \text { by additive commutativity } \\
& =[(m+(-m))+n]+(-n) & & \text { by additive associativity } \\
& =[0+n]+(-n) & & \text { by Axiom 1.4 } \\
& =n+(-n) & & \text { by Proposition 1.8 } \\
& =0 & & \text { by Axiom 1.4. }
\end{aligned}
$$

Proposition HW2.1 then implies

$$
(-m)+(-n)=-(m+n) .
$$

Proposition 1.25(ii): For all $m \in \mathbb{Z}$

$$
-m=(-1) \cdot m
$$

Proof. Let $m \in \mathbb{Z}$. Then

$$
\begin{aligned}
m+(-1) \cdot m & =1 \cdot m+(-1) \cdot m & & \text { by Proposition } 1.7 \\
& =(1+(-1)) \cdot m & & \text { by Proposition } 1.6 \\
& =0 \cdot m & & \text { by Axiom } 1.4 \\
& =0 & & \text { by Proposition 1.14. }
\end{aligned}
$$

Proposition HW2.1 then implies

$$
(-1) m=-m .
$$

