Proposition 1.16: If *m* and *n* are even integers, then so is m + n.

Proof. Let m and n be even integers. To show that m + n is even we must show that there exists an integer *j* such that

$$m+n=j\cdot 2. \tag{1}$$

Since *m* and *n* are even, there are integers *p* and *q* such that

$$m = p \cdot 2$$
 and $n = q \cdot 2$.

So

$$m + n = p \cdot 2 + q \cdot 2$$
$$= (p + q) \cdot 2$$

by distributivity. Hence equation (1) is satisfied with j = p + q, and m + n is even. \Box

Proposition 1.17(ii) (Our version): If *m* is an integer and *m* is divisible by 0, then m = 0.

Proof. Suppose that *m* is an integer that is divisible by 0. So there is an integer *j* such that

Proposition 1.14 implies $j \cdot 0 = 0$. Hence m = 0.

Proposition 1.18: Let $x \in \mathbb{Z}$. If x has the property that for all $m \in \mathbb{Z}$, mx = m, then x = 1.

 $m = j \cdot 0.$

Proof. Suppose x is an integer such that mx = m for all $m \in \mathbb{Z}$. In particular, this equation is satisfied with m = 1 and hence

 $1 \cdot x = 1$.

Proposition 1.7 implies $1 \cdot x = x$, so x = 1.

Proposition 1.19: Let $x \in \mathbb{Z}$. If x has the property that for some nonzero $m \in \mathbb{Z}$, mx = m, then x = 1.

Proof. Suppose x is an integer such that for some nonzero $m \in \mathbb{Z}$, mx = m. From Axiom 1.3 we know that $m = m \cdot 1$. Hence

$$m \cdot x = m \cdot 1.$$

Since $m \neq 0$, we conclude from Axiom 1.5 that x = 1.

Proposition 1.24: Let $x \in \mathbb{Z}$. If $x \cdot x = x$ then x = 0 or x = 1.

Proof. Suppose x is an integer such that $x \cdot x = x$. To show that either x = 0 or x = 1, it is enough to show that if $x \neq 0$, then x = 1. So suppose $x \neq 0$. Then

$$\begin{aligned} x \cdot x &= x \\ &= x \cdot 1 \end{aligned}$$

by Axiom 1.3. Since $x \neq 0$, Axiom 1.5 implies

x = 1.

Proposition HW2.1: If $m, n \in \mathbb{Z}$ and m + n = 0 then n = -m.

Proof. Suppose $m, n \in \mathbb{Z}$ and m+n = 0. From Axiom 1.4 we know that m+(-m) = 0. But then

$$m + n = m + (-m)$$

and Proposition 1.9 implies n = -m.

Proposition 1.25(i): For all $m, n \in \mathbb{Z}$

$$-(m+n) = (-m) + (-n)$$

Proof. Let $m, n \in \mathbb{Z}$. Then

$$(m+n) + [(-m) + (-n)] = [(m+n) + (-m)] + (-n)$$
by additive associativity
$$= [m + (n + (-m))] + (-n)$$
by additive associativity
$$= [m + ((-m) + n)] + (-n)$$
by additive commutativity
$$= [(m + (-m)) + n] + (-n)$$
by additive associativity
$$= [0 + n] + (-n)$$
by Axiom 1.4
$$= n + (-n)$$
by Axiom 1.4

Proposition HW2.1 then implies

$$(-m) + (-n) = -(m+n).$$

Proposition 1.25(ii): For all $m \in \mathbb{Z}$

$$-m = (-1) \cdot m.$$

Proof. Let $m \in \mathbb{Z}$. Then

$$m + (-1) \cdot m = 1 \cdot m + (-1) \cdot m$$
by Proposition 1.7 $= (1 + (-1)) \cdot m$ by Proposition 1.6 $= 0 \cdot m$ by Axiom 1.4 $= 0$ by Proposition 1.14.

Proposition HW2.1 then implies

(-1)m = -m.