Proposition 1.14: For all $m \in \mathbb{Z}$, $m \cdot 0 = 0 = 0 \cdot m$.

Proof. Let $m \in \mathbb{Z}$. Since multiplicative commutativity implies $m \cdot 0 = 0 \cdot m$, it is enough to show that $m \cdot 0 = 0$. Notice that

$$m \cdot 0 = m \cdot (0+0)$$
 (Axiom 1.2)
 $m \cdot 0 + m \cdot 0$ (distributivity).

But then Axiom 1.2 implies

$$m \cdot 0 + 0 = m \cdot 0 + m \cdot 0.$$

So, by Proposition 1.9,

$$0 = m \cdot 0$$
.

Proposition 1.17(i): The integer 0 is divisible by every integer.

Proof. Let $n \in \mathbb{Z}$. To show that $n \mid 0$, we must find an integer j such that

$$0 = j \cdot n. \tag{1}$$

Proposition 1.14 implies

$$0 = 0 \cdot n$$
.

Hence equation (1) holds with j = 0.