Proposition 1.14: For all $m \in \mathbb{Z}, m \cdot 0=0=0 \cdot m$.

Proof. Let $m \in \mathbb{Z}$. Since multiplicative commutativity implies $m \cdot 0=0 \cdot m$, it is enough to show that $m \cdot 0=0$. Notice that

$$
\begin{array}{cl}
m \cdot 0=m \cdot(0+0) & \text { (Axiom 1.2) } \\
m \cdot 0+m \cdot 0 & \text { (distributivity) }
\end{array}
$$

But then Axiom 1.2 implies

$$
m \cdot 0+0=m \cdot 0+m \cdot 0 .
$$

So, by Proposition 1.9,

$$
0=m \cdot 0 .
$$

Proposition 1.17(i): The integer 0 is divisible by every integer.

Proof. Let $n \in \mathbb{Z}$. To show that $n \mid 0$, we must find an integer j such that

$$
\begin{equation*}
0=j \cdot n \tag{1}
\end{equation*}
$$

Proposition 1.14 implies

$$
0=0 \cdot n .
$$

Hence equation (1) holds with $j=0$.

