Proposition 1.7: If m is an integer, then $0+m=m$ and $1 \cdot m=m$.

Proof. Let $m \in \mathbb{Z}$. Then by additive commutivity

$$
0+m=m+0 .
$$

But $m+0=m$ by Axiom 1.2. So $0+m=m$.
On the other hand, by multiplicative commutivity,

$$
1 \cdot m=m \cdot 1 .
$$

Axiom 1.3 implies $m \cdot 1=m$, so $1 \cdot m=m$.

Proposition 1.8: If m is an integer, then $(-m)+m=0$.
Proof. Let $m \in \mathbb{Z}$. Then additive commutativity implies

$$
(-m)+m=m+(-m) .
$$

Since Axiom 1.4 implies $m+(-m)=0$, it follows that $(-m)+m=0$.

Proposition 1.11(iii): Let m, n and p be integers. Then $m+(n+p)=(p+m)+n$.
Proof. Suppose m, n, and p are integers. Then

$$
\begin{array}{rlr}
m+(n+p) & =m+(p+n) & \text { by additive commutativity } \\
& =(m+p)+n & \quad \text { by additive associativity } \\
& =(p+m)+n & \\
\text { by additive commutativity. }
\end{array}
$$

