Proposition 1.7: If *m* is an integer, then 0 + m = m and $1 \cdot m = m$.

Proof. Let $m \in \mathbb{Z}$. Then by additive commutivity

$$0 + m = m + 0.$$

But m + 0 = m by Axiom 1.2. So 0 + m = m.

On the other hand, by multiplicative commutivity,

$$1 \cdot m = m \cdot 1.$$

Axiom 1.3 implies $m \cdot 1 = m$, so $1 \cdot m = m$.

Proposition 1.8: If *m* is an integer, then (-m) + m = 0.

Proof. Let $m \in \mathbb{Z}$. Then additive commutativity implies

$$(-m) + m = m + (-m).$$

Since Axiom 1.4 implies m + (-m) = 0, it follows that (-m) + m = 0.

Proposition 1.11(iii): Let *m*, *n* and *p* be integers. Then m + (n + p) = (p + m) + n.

Proof. Suppose *m*, *n*, and *p* are integers. Then

m + (n+p) = m + (p+n)	by additive commutativity
= (m+p) + n	by additive associativity
= (p+m) + n	by additive commutativity.