If *A* and *B* are sets, we say they have the *same cardinality* if there exists a bijection $f : A \rightarrow B$, in which case we write |A| = |B|. We say a set *A* is *countable* if there exists a bijection $f : \mathbb{N} \rightarrow A$.

Proposition HW14.1: Cardinality defines an equivalence relation.

Proof. Let A be a set. Consider $id_A : A \to A$. Since $id_A \circ id_A = id_A$, this map is its own inverse and is hence a bijection. So |A| = |A|.

Suppose *A* and *B* are sets such that |A| = |B|. Then there exists a bijection $f : A \to B$. Since *f* is a bijection, there is an inverse function $f^{-1} : B \to A$ such that $f^{-1} \circ f = id_A$ and $f^{-1} \circ f = id_B$. Note that these equations imply that f^{-1} has an inverse, namely *f*. So f^{-1} is a bijection from *B* to *A*. So |B| = |A|.

Suppose *A*, *B*, and *C* are sets such that |A| = |B| and |B| = |C|. Then there exist bijections $f : A \to B$ and $g : B \to C$. But then $g \circ f$ is a bijection from *A* to *C*. So |A| = |C|. \Box

Proposition HW14.2: The set (0, 1) has the same cardinality as (-1, 1).

Proof. Consider $f : (0, 1) \rightarrow (-1, 1)$ given by f(x) = 2x - 1. We note that if $x \in (0, 1)$, 0 < x < 1, so 0 < 2x < 2 and -1 < 2x - 1 < 1. Hence f really is a map from (0, 1) to (-1, 1). We claim that this map is a bijection.

Indeed, consider $g: (-1, 1) \rightarrow (0, 1)$ given by g(y) = (y+1)/2. To see that g maps between these sets, suppose $y \in (-1, 1)$. Then -1 < y < 1 and hence 0 < y + 1 < 2. Dividing by 2 we conclude that 0 < f(y) < 1 as desired.

To see that $g = f^{-1}$, let $x \in (0, 1)$. Then g(f(x)) = (2x - 1) + 1)/2 = 2x/2 = x. Moreover, f(g(y)) = 2g(y) - 1 = 2(y + 1)/2 - 1 = y. So $g = f^{-1}$. Since f is invertible, it is an injection.

Lemma HW14.A: The set (0, 1) has the same cardinality as the set $(1, \infty)$.

Proof. Define $f : (0, 1) \to (1, \infty)$ by f(x) = 1/x. We claim that f is a map between these two sets. Indeed, suppose 0 < x < 1. Since x > 0 we conclude 0 < 1 < 1/x as well. So $f(x) \in (1, \infty)$.

To see that f is injective, suppose $f(x_1) = f(x_2)$. Then $1/x_1 = 1/x_2$ and by taking reciprocals, $x_1 = x_2$.

To see that f is surjective, suppose y > 1. Proposition 8.40 implies 1 > 1/y > 0. Let x = 1/y, so $x \in (0, 1)$. Then f(x) = 1/(1/y) = y.

Lemma HW14.B: For all $a \in \mathbb{R}$, the set (a, ∞) has the same cardinality as the set $(0, \infty)$.

Proof. Let $a \in \mathbb{R}$. Define $f : (a, \infty) \to (0, \infty)$ by f(x) = x - a. We claim that f is a map between these two sets. Indeed, suppose x > a. Then f(x) = x - a > 0. So $f(x) \in (0, \infty)$.

Define $g : (0, \infty) \to (a, \infty)$ by g(y) = y + a. To see that g maps between these two sets, suppose $y \in (0, \infty)$. Then y > 0 and f(y) = y + a > 0 + a = a. So $f(y) \in (a, \infty)$.

Suppose $x \in (a, \infty)$. Then g(f(x)) = (x - a) + a = x. Similarly, suppose $y \in (0, \infty)$. Then f(g(y)) = (y + a) - a = y. Hence $g = f^{-1}$ and f is a bijection.

Proposition HW14.3: The set (0, 1) has the same cardinality as $(0, \infty)$.

Proof. By Lemma 14.A, $|(0, 1)| = |(1, \infty)|$. By Lemma 14.B, $|(1, \infty)| = |(0, \infty)|$. So by transitivity of cardinality,

$$|(0,1)| = |(0,\infty)|$$

Proposition HW14.4: The set (-1, 1) has the same cardinality as \mathbb{R} .

Proof. Let $f : (0,1) \to (0,\infty)$ be a bijection. This map exists by problem 14.3. Define $h: (-1,1) \to \mathbb{R}$ by

$$h(x) = \begin{cases} f(x) & x > 0\\ 0 & x = 0\\ -f(-x) & x < 0. \end{cases}$$

Note that h(x) is positive, negative, or zero depending on whether x is positive, negative, or zero.

To see that *h* is an injection, suppose $a_1, a_2 \in (0, 1)$ and $h(a_1) = h(a_2)$. Let *b* be the common value. Suppose b > 0. then a_1 and a_2 are both positive as well. Hence $f(a_1) = f(a_2)$. Since *f* is injective, $a_1 = a_2$. Suppose b = 0. Then $a_1 = a_2 = 0$ as well. Finally, suppose b < 0. Then a_1 and a_2 are both positive as well. Hence $h(a_1) = -f(-a_1)$ and $h(a_2) = -f(-a_2)$. So $-f(-a_1) = -f(-a_2)$. So $f(-a_1) = f(-a_2)$. Since *f* is an injection, $-a_1 = -a_2$ and $a_1 = a_2$.

Lemma HW14C: The set (0, 1] has the same cardinality as the set $[1, \infty)$.

Proof. Define $f : (0, 1] \rightarrow [1, \infty)$ by f(x) = 1/x. We claim that f is a map between these two sets. Indeed, suppose $0 < x \le 1$. Since x > 0 we conclude $0 < 1 \le 1/x$ as well. So $f(x) \in [1, \infty)$.

To see that f is injective, suppose $f(x_1) = f(x_2)$. Then $1/x_1 = 1/x_2$ and by taking reciprocals, $x_1 = x_2$.

To see that f is surjective, suppose $y \ge 1$. If y > 1, Proposition 8.40 implies 1 > 1/y > 0. And if y = 1, certainly $1 \ge 1/y > 0$. So $1/y \in (0, 1]$ Let x = 1/y, so $x \in (0, 1)$. Then f(x) = 1/(1/y) = y.

Proposition HW14.5: The set (0, 1) has the same cardinality as (0, 1].

Proof. We will show that $(1, \infty)$ has the same cardinality as [1, infty). Then, by transitivity of cardinality, using Proposition 14.3 and Lemma HW14.C,

$$|(0,1)| = |(1,\infty)| = |[1,\infty)| = |(0,1]|.$$

Define $f : [1, \infty) \to (1, \infty)$ by

$$f(x) = \begin{cases} x+1 & x \in \mathbb{N} \\ x & \text{otherwise.} \end{cases}$$

To see that f maps between the two sets, suppose $x \in [1, \infty)$. Then either x = 1 or x > 1. Note that f(x) is either x or x + 1. So $f(x) \ge x$. Hence if x > 1, $f(x) \ge x > 1$. And if x = 1, then f(x) = f(1) = 2 > 1. So f(x) > 1 in all cases.

Observe that if $x \ge 1$, then $f(x) \in \mathbb{N}$ if and only if $x \in \mathbb{N}$. Indeed, suppose $x \in \mathbb{N}$. Then $f(x) = x + 1 \in \mathbb{N}$. Suppose $x \notin \mathbb{N}$. Then $f(x) = x \notin \mathbb{N}$ as well.

We now show that f is a bijection. Suppose $x_1, x_2 \in [1, \infty)$ and $f(x_1) = f(x_1)$. Either the common value b is a natural number or it is not. If $b \in \mathbb{N}$ then $x_1, x_2 \in \mathbb{N}$ and $f(x_1) = x_1 + 1$ and $f(x_2) = x_2 + 1$. So $x_1 + 1 = x_2 + 1$ and $x_1 = x_2$. Suppose $b \notin \mathbb{N}$. The $x_1, x_2 \notin \mathbb{N}$ as well and $f(x_1) = x_1$ and $f(x_2) = x_2$. So $x_1 = x_2$ in this case as well.

Now suppose $y \in (1, \infty)$. Then either $y \in \mathbb{N}$ or $y \notin \mathbb{N}$. Suppose $y \in \mathbb{N}$. Since y > 1, we know that $y \ge 2$. Let x = y - 1, so $x \ge 1$. Since $x \in \mathbb{N}$, f(x) = x + 1 = (y - 1) + 1 = y. Now suppose $y \notin \mathbb{N}$. Let x = y. Then $x \ge 1$ as y > 1, and f(x) = x = y. So f is surjective. \Box