If A and B are sets, we say they have the same cardinality if there exists a bijection $f: A \rightarrow$ B, in which case we write $|A|=|B|$. We say a set A is countable if there exists a bijection $f: \mathbb{N} \rightarrow A$.

Proposition HW14.1: Cardinality defines an equivalence relation.
Proof. Let A be a set. Consider $\mathrm{id}_{A}: A \rightarrow A$. Since $\mathrm{id}_{A} \circ \mathrm{id}_{A}=\mathrm{id}_{A}$, this map is its own inverse and is hence a bijection. So $|A|=|A|$.

Suppose A and B are sets such that $|A|=|B|$. Then there exists a bijection $f: A \rightarrow B$. Since f is a bijection, there is an inverse function $f^{-1}: B \rightarrow A$ such that $f^{-1} \circ f=\mathrm{id}_{A}$ and $f^{-1} \circ f=\operatorname{id}_{B}$. Note that these equations imply that f^{-1} has an inverse, namely f. So f^{-1} is a bijection from B to A. So $|B|=|A|$.

Suppose A, B, and C are sets such that $|A|=|B|$ and $|B|=|C|$. Then there exist bijections $f: A \rightarrow B$ and $g: B \rightarrow C$. But then $g \circ f$ is a bijection from A to C. So $|A|=|C|$.

Proposition HW14.2: The set $(0,1)$ has the same cardinality as $(-1,1)$.
Proof. Consider $f:(0,1) \rightarrow(-1,1)$ given by $f(x)=2 x-1$. We note that if $x \in(0,1)$, $0<x<1$, so $0<2 x<2$ and $-1<2 x-1<1$. Hence f really is a map from $(0,1)$ to $(-1,1)$. We claim that this map is a bijection.

Indeed, consider $g:(-1,1) \rightarrow(0,1)$ given by $g(y)=(y+1) / 2$. To see that g maps between these sets, suppose $y \in(-1,1)$. Then $-1<y<1$ and hence $0<y+1<2$. Dividing by 2 we conclude that $0<f(y)<1$ as desired.
To see that $g=f^{-1}$, let $x \in(0,1)$. Then $\left.g(f(x))=(2 x-1)+1\right) / 2=2 x / 2=x$. Moreover, $f(g(y))=2 g(y)-1=2(y+1) / 2-1=y$. So $g=f^{-1}$. Since f is invertible, it is an injection.

Lemma HW14.A: The set $(0,1)$ has the same cardinality as the set $(1, \infty)$.
Proof. Define $f:(0,1) \rightarrow(1, \infty)$ by $f(x)=1 / x$. We claim that f is a map between these two sets. Indeed, suppose $0<x<1$. Since $x>0$ we conclude $0<1<1 / x$ as well. So $f(x) \in(1, \infty)$.

To see that f is injective, suppose $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then $1 / x_{1}=1 / x_{2}$ and by taking reciprocals, $x_{1}=x_{2}$.
To see that f is surjective, suppose $y>1$. Proposition 8.40 implies $1>1 / y>0$. Let $x=1 / y$, so $x \in(0,1)$. Then $f(x)=1 /(1 / y)=y$.

Lemma HW14.B: For all $a \in \mathbb{R}$, the set (a, ∞) has the same cardinality as the set $(0, \infty)$.
Proof. Let $a \in \mathbb{R}$. Define $f:(a, \infty) \rightarrow(0, \infty)$ by $f(x)=x-a$. We claim that f is a map between these two sets. Indeed, suppose $x>a$. Then $f(x)=x-a>0$. So $f(x) \in(0, \infty)$.

Define $g:(0, \infty) \rightarrow(a, \infty)$ by $g(y)=y+a$. To see that g maps between these two sets, suppose $y \in(0, \infty)$. Then $y>0$ and $f(y)=y+a>0+a=a$. So $f(y) \in(a, \infty)$.

Suppose $x \in(a, \infty)$. Then $g(f(x))=(x-a)+a=x$. Similarly, suppose $y \in(0, \infty)$. Then $f(g(y))=(y+a)-a=y$. Hence $g=f^{-1}$ and f is a bijection.

Proposition HW14.3: The set $(0,1)$ has the same cardinality as $(0, \infty)$.
Proof. By Lemma 14.A, $|(0,1)|=|(1, \infty)|$. By Lemma 14.B, $|(1, \infty)|=|(0, \infty)|$. So by transitivity of cardinality,

$$
|(0,1)|=|(0, \infty)| .
$$

Proposition HW14.4: The set $(-1,1)$ has the same cardinality as \mathbb{R}.
Proof. Let $f:(0,1) \rightarrow(0, \infty)$ be a bijection. This map exists by problem 14.3. Define $h:(-1,1) \rightarrow \mathbb{R}$ by

$$
h(x)= \begin{cases}f(x) & x>0 \\ 0 & x=0 \\ -f(-x) & x<0\end{cases}
$$

Note that $h(x)$ is positive, negative, or zero depending on whether x is positive, negative, or zero.

To see that h is an injection, suppose $a_{1}, a_{2} \in(0,1)$ and $h\left(a_{1}\right)=h\left(a_{2}\right)$. Let b be the common value. Suppose $b>0$. then a_{1} and a_{2} are both positive as well. Hence $f\left(a_{1}\right)=f\left(a_{2}\right)$. Since f is injective, $a_{1}=a_{2}$. Suppose $b=0$. Then $a_{1}=a_{2}=0$ as well. Finally, suppose $b<0$. Then a_{1} and a_{2} are both positive as well. Hence $h\left(a_{1}\right)=-f\left(-a_{1}\right)$ and $h\left(a_{2}\right)=-f\left(-a_{2}\right)$. So $-f\left(-a_{1}\right)=-f\left(-a_{2}\right)$. So $f\left(-a_{1}\right)=f\left(-a_{2}\right)$. Since f is an injection, $-a_{1}=-a_{2}$ and $a_{1}=a_{2}$.

Lemma HW14C: The set $(0,1]$ has the same cardinality as the set $[1, \infty)$.

Proof. Define $f:(0,1] \rightarrow[1, \infty)$ by $f(x)=1 / x$. We claim that f is a map between these two sets. Indeed, suppose $0<x \leq 1$. Since $x>0$ we conclude $0<1 \leq 1 / x$ as well. So $f(x) \in[1, \infty)$.

To see that f is injective, suppose $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then $1 / x_{1}=1 / x_{2}$ and by taking reciprocals, $x_{1}=x_{2}$.

To see that f is surjective, suppose $y \geq 1$. If $y>1$, Proposition 8.40 implies $1>1 / y>0$. And if $y=1$, certainly $1 \geq 1 / y>0$. So $1 / y \in(0,1]$ Let $x=1 / y$, so $x \in(0,1)$. Then $f(x)=1 /(1 / y)=y$.

Proposition HW14.5: The set $(0,1)$ has the same cardinality as $(0,1]$.

Proof. We will show that $(1, \infty)$ has the same cardinality as [1, infty). Then, by transitivity of cardinality, using Proposition 14.3 and Lemma HW14.C,

$$
|(0,1)|=|(1, \infty)|=|[1, \infty)|=|(0,1]| .
$$

Define $f:[1, \infty) \rightarrow(1, \infty)$ by

$$
f(x)= \begin{cases}x+1 & x \in \mathbb{N} \\ x & \text { otherwise }\end{cases}
$$

To see that f maps between the two sets, suppose $x \in[1, \infty)$. Then either $x=1$ or $x>1$. Note that $f(x)$ is either x or $x+1$. So $f(x) \geq x$. Hence if $x>1, f(x) \geq x>1$. And if $x=1$, then $f(x)=f(1)=2>1$. So $f(x)>1$ in all cases.
Observe that if $x \geq 1$, then $f(x) \in \mathbb{N}$ if and only if $x \in \mathbb{N}$. Indeed, suppose $x \in \mathbb{N}$. Then $f(x)=x+1 \in \mathbb{N}$. Suppose $x \notin \mathbb{N}$. Then $f(x)=x \notin \mathbb{N}$ as well.

We now show that f is a bijection. Suppose $x_{1}, x_{2} \in[1, \infty)$ and $f\left(x_{1}\right)=f\left(x_{1}\right)$. Either the common value b is a natural number or it is not. If $b \in \mathbb{N}$ then $x_{1}, x_{2} \in \mathbb{N}$ and $f\left(x_{1}\right)=x_{1}+1$ and $f\left(x_{2}\right)=x_{2}+1$. So $x_{1}+1=x_{2}+1$ and $x_{1}=x_{2}$. Suppose $b \notin \mathbb{N}$. The $x_{1}, x_{2} \notin \mathbb{N}$ as well and $f\left(x_{1}\right)=x_{1}$ and $f\left(x_{2}\right)=x_{2}$. So $x_{1}=x_{2}$ in this case as well.

Now suppose $y \in(1, \infty)$. Then either $y \in \mathbb{N}$ or $y \notin \mathbb{N}$. Suppose $y \in \mathbb{N}$. Since $y>1$, we know that $y \geq 2$. Let $x=y-1$, so $x \geq 1$. Since $x \in \mathbb{N}, f(x)=x+1=(y-1)+1=y$. Now suppose $y \notin \mathbb{N}$. Let $x=y$. Then $x \geq 1$ as $y>1$, and $f(x)=x=y$. So f is surjective.

