If A and B are sets, we say they have the *same cardinality* if there exists a bijection $f : A \to B$, in which case we write |A| = |B|. We say a set A is *countable* if there exists a bijection $f : \mathbb{N} \to A$.

Proposition HW14.1: Cardinality defines an equivalence relation.

Proof. **Proposition HW14.2:** The set (0, 1) has the same cardinality as (-1, 1). Proof. **Proposition HW14.3:** The set (0, 1) has the same cardinality as $(0, \infty)$. Proof. **Proposition HW14.4:** The set (-1, 1) has the same cardinality as \mathbb{R} . Proof. **Proposition HW14.5:** The set (0, 1) has the same cardinality as (0, 1]. Proof. **Proposition HW14.6:** $\{a + \sqrt{2}b : a, b \in \mathbb{Q}\}$ is countable. Proof.