Proposition HW13.1: Suppose $f: \mathbb{Z} \rightarrow \mathbb{R}$ and that for all $n, m \in \mathbb{Z}, f(n+m)=f(n)+$ $f(m)$ and $f(n \cdot m)=f(n) \cdot f(m)$. Then either $f(n)=0_{\mathbb{R}}$ for all $n \in \mathbb{Z}$ or $f=e$.

Proof. Your proof here. Hint: either $f\left(1_{\mathbb{Z}}\right)=0_{\mathbb{R}}$ or not.
In chapter 9 we constructed a function $e$ from $\mathbb{Z}$ to $\mathbb{R}$ that obeyed nice rules with respect to arithmetic. The point of proposition 9.G is that there was only one good way to do this.

Proposition 11.17: Suppose $x, y \in \mathbb{R}$ and $x<y$. Then there exists an irrational number $z$ such that $x<z<y$.

Proof. Your proof goes here.

Proposition 10.B: Suppose $x \in \mathbb{R}$ and $M \geq 0$. Then $|x| \leq M$ if and only if $-M \leq x \leq M$.

Proof. Your proof goes here.

Proposition HW 13.2: $\mathbb{N} \subseteq \mathbb{R}$ is not bounded above.

Proof. Your proof goes here. Hint: If $\mathbb{N}$ were bounded above, it would have a supremum $x$. I bet there's a natural number larger than $x-\frac{1}{2}$ then...

