Proposition 9.18: For all $m, n \in \mathbb{Z}$,

$$e(m \cdot n) = e(m) \cdot e(n).$$

Proof. Let $m \in \mathbb{Z}$. We first show that for all $n \in \mathbb{Z}_{\geq 0}$ that $e(m \cdot n) = e(m) \cdot e(n)$ by induction on *n*. First, when n = 0,

$$e(m \cdot n) = e(m \cdot 0) = e(0) = 0 = e(m) \cdot 0 = e(m) \cdot e(0) = e(m) \cdot e(n).$$

Now suppose for some $n \ge 0$ that e(mn) = e(m)e(n). Then applying Proposition 9.17 and the induction hypothesis,

$$e(m(n + 1)) = e(mn + m)$$

= $e(mn) + e(m)$
= $e(m)e(n) + e(m)$
= $e(m)[e(n) + 1]$
= $e(m)e(n + 1)$.

This completes the proof by induction.

It remains to show that for all n < 0, e(mn) = e(m)e(n). Suppose n < 0. Then -n > 0. So

$$e(mn) = e(-(m(-n))) = -e(m(-n)) = -e(m)e(-n) = e(m)e(n)$$

where we applied Lemma 9. twice.

Lemma 11.A: Suppose $a, b \in \mathbb{Z}$ and $b \neq 0$. Let g = gcd(a, b), so $g \in \mathbb{N}$, $g \mid a$ and $g \mid b$. Then

$$gcd\left(\frac{a}{g},\frac{b}{g}\right) = 1.$$

Proof. Suppose $a, b \in \mathbb{Z}$ and $b \neq 0$. Let g = gcd(a, b). Since $b \neq 0$, g > 0. Since $g \mid a$ and $g \mid b$, and since $g \neq 0$, there are unique integers *i* and *j* such that a = gi and b = gj; recall that we defined a/g = i and b/g = j. Now

$$g = \gcd(a, b) = \gcd(gi, gj) = |g| \gcd(i, j) = g \gcd(i, j).$$

by Proposition 6.30, and using the fact that g > 0. Since $g \neq 0$, multiplicative cancellation implies gcd(i, j) = 1.

Proposition 8.50: If the sets A and B are bounded above and non-empty, and if $A \subseteq B$, then $\sup A \leq \sup B$.

Proof. Let $a \in A$. Then, since $A \subseteq B$, $a \in B$. So $a \leq \sup B$. This implies that $\sup B$ is an upper bound for A. But $\sup A$ is less than or equal to every upper bound for A. Hence $\sup A \leq \sup B$.