Proposition 9.18: For all $m, n \in \mathbb{Z}$,

$$
e(m \cdot n)=e(m) \cdot e(n) .
$$

Proof. Let $m \in \mathbb{Z}$. We first show that for all $n \in \mathbb{Z}_{\geq 0}$ that $e(m \cdot n)=e(m) \cdot e(n)$ by induction on n. First, when $n=0$,

$$
e(m \cdot n)=e(m \cdot 0)=e(0)=0=e(m) \cdot 0=e(m) \cdot e(0)=e(m) \cdot e(n) .
$$

Now suppose for some $n \geq 0$ that $e(m n)=e(m) e(n)$. Then applying Proposition 9.17 and the induction hypothesis,

$$
\begin{aligned}
e(m(n+1)) & =e(m n+m) \\
& =e(m n)+e(m) \\
& =e(m) e(n)+e(m) \\
& =e(m)[e(n)+1] \\
& =e(m) e(n+1) .
\end{aligned}
$$

This completes the proof by induction.
It remains to show that for all $n<0, e(m n)=e(m) e(n)$. Suppose $n<0$. Then $-n>0$. So

$$
e(m n)=e(-(m(-n)))=-e(m(-n))=-e(m) e(-n)=e(m) e(n)
$$

where we applied Lemma 9.Â twice.

Lemma 11.A: Suppose $a, b \in \mathbb{Z}$ and $b \neq 0$. Let $g=\operatorname{gcd}(a, b)$, so $g \in \mathbb{N}, g \mid a$ and $g \mid b$. Then

$$
\operatorname{gcd}\left(\frac{a}{g}, \frac{b}{g}\right)=1
$$

Proof. Suppose $a, b \in \mathbb{Z}$ and $b \neq 0$. Let $g=\operatorname{gcd}(a, b)$. Since $b \neq 0, g>0$. Since $g \mid a$ and $g \mid b$, and since $g \neq 0$, there are unique integers i and j such that $a=g i$ and $b=g j$; recall that we defined $a / g=i$ and $b / g=j$. Now

$$
g=\operatorname{gcd}(a, b)=\operatorname{gcd}(g i, g j)=|g| \operatorname{gcd}(i, j)=g \operatorname{gcd}(i, j)
$$

by Proposition 6.30, and using the fact that $g>0$. Since $g \neq 0$, multiplicative cancellation implies $\operatorname{gcd}(i, j)=1$.

Proposition 8.50: If the sets A and B are bounded above and non-empty, and if $A \subseteq B$, then $\sup A \leq \sup B$.

Proof. Let $a \in A$. Then, since $A \subseteq B, a \in B$. So $a \leq \sup B$. This implies that $\sup B$ is an upper bound for A. But $\sup A$ is less than or equal to every upper bound for A. Hence $\sup A \leq \sup B$.

