Proposition 9.18: For all $m, n \in \mathbb{Z}$,

$$
e(m \cdot n)=e(m) \cdot e(n) .
$$

Proof. Your proof goes here. Attempt maximal laziness.
Lemma 11.A: Suppose $a, b \in \mathbb{Z}$ and $b \neq 0$. Let $g=\operatorname{gcd}(a, b)$, so $g \in \mathbb{N}, g \mid a$ and $g \mid b$. Then

$$
\operatorname{gcd}\left(\frac{a}{g}, \frac{b}{g}\right)=1
$$

Proof. Recall that if $c \mid d$, and $c \neq 0$, then $\frac{c}{d}$ is the unique integer j such that $c=j d$.
Feel free to use Proposition 6.30!

Proposition 8.50: If the sets A and B are bounded above and non-empty, and if $A \subseteq B$, then $\sup A \leq \sup B$.

Proof. Your proof goes here.

