This looks long, but most of the proofs are very short!

Proposition 8.A: The number $0 \in \mathbb{R}$ does not have a multiplicative inverse.
Proof. Suppose to the contrary that there exists $x \in \mathbb{R}$ such that $x \cdot 0=1$. Proposition 8.15 implies that $x \cdot 1=0$. Hence $1=0$, which contradicts Axiom 8.3.

Proposition 8.B: If $c, x \in \mathbb{R}$ and $c x=1$, then $x \neq 0$ and $c=x^{-1}$.
Proof. Suppose $c, x \in \mathbb{R}$ and $c x=1$. Since $1 \neq 0$, by the contrapositive of Proposition $8.23, c \neq 0$ and $x \neq 0$. Since $x \neq 0$, it has a multiplicative inverse x^{-1}. Since $c x=1$ and $x^{-1} x=1$,

$$
c x=x^{-1} x .
$$

Multiplying this equation on the right by x^{-1} and applying Axiom 8.5 to both sides we conclude that $c=x^{-1}$.

Proposition 8.C: If $x, y \in \mathbb{R}$ and $x \neq 0$ and $y \neq 0$, then $x y \neq 0$ and $(x y)^{-1}=x^{-1} y^{-1}$.
Proof. Suppose $x, y \in \mathbb{R}$ and $x \neq 0$ and $y \neq 0$. Notice that

$$
\left(x^{-1} y^{-1}\right) x y=\left(x^{-1} x\right)\left(y^{-1} y\right)=1 \cdot 1=1 .
$$

Proposition 8.B then implies that $x y \neq 0$ and $(x y)^{-1}=x^{-1} y^{-1}$.
Proposition 8.D: If $x \in \mathbb{R}$ and $x \neq 0$, then $x^{-1} \neq 0$ and $\left(x^{-1}\right)^{-1}=x$.
Proof. Suppose $x \neq 0$. Note that

$$
x x^{-1}=x^{-1} x=1 .
$$

Proposition 8.B then implies that $x^{-1} \neq 0$ and $\left(x^{-1}\right)^{-1}=x$.

Proposition 8.E: If $x \in \mathbb{R}$ and $x>0$, then $x^{-1}>0$.

Proof. Suppose $x>0$. We know that $x^{-1} x=1$. Since $x>0$ and $1>0$, Proposition 8.36 implies $x^{-1}>0$ as well.

Corollary 8.F: If $x \in \mathbb{R}$ and $x \neq 0$, if $x^{-1}>0$ then $x>0$.
Proof. Suppose $x \neq 0$ and $x^{-1}>0$. Propositions 8.D and 8.E then imply that $x=\left(x^{-1}\right)^{-1}>$ 0 .

Proposition 8.40:

(ii) Let $x, y \in \mathbb{R}$ such that $0<x<y$. Then $0<1 / y<1 / x$.

Proof. Suppose $0<x<y$. Then x^{-1} and y^{-1} are both positive as well, by Proposition 8.E. Since $x^{-1}>0$,

$$
0 x^{-1}<x x^{-1}<y x^{-1} .
$$

That is,

$$
0<1<y x^{-1}
$$

Similarly, since $y^{-1}>0$,

$$
0 y^{-1}<y x^{-1} y^{-1}<y x^{-1} y^{-1} .
$$

So

$$
0<x^{-1}<y^{-1}
$$

Proposition 8.43: Let $x, y \in \mathbb{R}$ such that $x<y$. Then there exists $z \in \mathbb{R}$ such that $x<z<y$.

Proof. Suppose $x<y$. Let $z=(x+y) / 2$. Since $x<y, 2 x=x+x<x+y$. Since $2>0$, $2^{-1}>0$ as well and

$$
2 x 2^{-1}<(x+y) \cdot 2^{-1} .
$$

Hence

$$
x<(x+y) / 2=z .
$$

Similarly, since $x<y, x+y<2 y$ and $z=(x+y) / 2<y$. Thus $x<z<y$.

Proposition 8.45: If x_{1} and x_{2} are least upper bounds for $A \subseteq \mathbb{R}$, then $x_{1}=x_{2}$.

Proof. Suppose x_{1} and x_{2} are least upper bounds for A. Then they are both upper bounds. Since x_{1} is a supremum of A and since x_{2} is an upper bound for $A, x_{1} \leq x_{2}$. Since x_{2} is a supremum of A and since x_{1} is an upper bound for $A, x_{2} \leq x_{1}$. So $x_{1} \leq x_{2} \leq x_{1}$ and $x_{2}=x_{1}$.

Proposition 8.45: $\sup ((-\infty, 0))=0$
Proof. We need to show that 0 is an upper bound for $(-\infty, 0)$ and that for all upper bounds $y, 0 \leq y$.

Let $x \in(-\infty, 0)$. Then $x<0$. So 0 is indeed an upper bound.
Now suppose $w<0$. By the previous proposition, there exists $z \in(0, \infty)$ such that $w<z<0$. Hence $z \in(-\infty, 0)$ and therefore w is not an upper bound for $(-\infty, 0)$. Thus, if y is an upper bound for $(-\infty, 0), y \geq 0$.

Lemma 9.A: Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$.

1. If $g \circ f$ is injective, then f is injective.
2. If $g \circ f$ is surjective, then g is surjective.
3. If $g \circ f$ is bijective, then f is injective and g is surjective.

Proof. 1) Suppose $g \circ f$ is injective. Suppose $a_{1}, a_{2} \in A$ and $f\left(a_{1}\right)=f\left(a_{2}\right)$. Then $g\left(f\left(a_{1}\right)\right)=$ $g\left(f\left(a_{2}\right)\right)$. That is, $(g \circ f)\left(a_{1}\right)=(g \circ f)\left(a_{2}\right)$. Since $g \circ f$ is injective, $a_{1}=a_{2}$.
2) Suppose $g \circ f$ is surjective. Suppose $c \in C$. Since $g \circ f$ is surjective, there exists $a \in A$ such that $(g \circ f)(a)=c$. Let $b=f(a)$. Then $g(b)=g(f(a))=(g \circ f)(a)=c$.
3) Suppose $g \circ f$ is bijective. Then it is both injective and surjective. So by parts 1) and 2), f is injective and g is surjective.

Proposition 9.7: (ii) If $f: A \rightarrow B$ is surjective, and $G: B \rightarrow C$ is surjective, then $g \circ f: A \rightarrow C$ is surjective.

Proof. Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are surjective. Let $c \in C$. Since g is surjective, there exists $b \in B$ such that $g(b)=c$. Since f is surjective there exists $a \in A$ such that $f(a)=b$. Then $(g \circ f)(a)=g(f(a))=g(b)=c$.

Proposition 9.11: If $f: A \rightarrow B$ has an inverse function, the inverse function is unique.
Proof. Suppose g_{1} and g_{2} are inverse functions for f. Let $b \in B$. Then $f\left(g_{1}(b)\right)=b=$ $f\left(g_{2}(b)\right)$. Since f has an inverse function it is bijective and in particular injective. So $g_{1}(b)=g_{2}(b)$. Hence $g_{1}=g_{2}$.

Proposition 11.3: If $x, y, z \in \mathbb{R}$ with $y \neq 0$ and $z \neq 0$, then

$$
\frac{x z}{y z}=\frac{x}{y} .
$$

Proof. Suppose $x, y, z \in \mathbb{R}$ with $y \neq 0$ and $z \neq 0$. Then

$$
\frac{x z}{y z}=(x z)(y z)^{-1}=(x z) y^{-1} z^{-1}=x y^{-1}=\frac{x}{y} .
$$

