Your name here

This looks long, but most of the proofs are very short!

Proposition 8.A: The number $0 \in \mathbb{R}$ does not have a multiplicative inverse.

Proof. Suppose to the contrary that there exists $x \in \mathbb{R}$ such that $x \cdot 0 = 1$. Proposition 8.15 implies that $x \cdot 1 = 0$. Hence 1 = 0, which contradicts Axiom 8.3.

Proposition 8.B: If $c, x \in \mathbb{R}$ and cx = 1, then $x \neq 0$ and $c = x^{-1}$.

Proof. Suppose $c, x \in \mathbb{R}$ and cx = 1. Since $1 \neq 0$, by the contrapositive of Proposition 8.23, $c \neq 0$ and $x \neq 0$. Since $x \neq 0$, it has a multiplicative inverse x^{-1} . Since cx = 1 and $x^{-1}x = 1$,

$$cx = x^{-1}x.$$

Multiplying this equation on the right by x^{-1} and applying Axiom 8.5 to both sides we conclude that $c = x^{-1}$.

Proposition 8.C: If $x, y \in \mathbb{R}$ and $x \neq 0$ and $y \neq 0$, then $xy \neq 0$ and $(xy)^{-1} = x^{-1}y^{-1}$.

Proof. Suppose $x, y \in \mathbb{R}$ and $x \neq 0$ and $y \neq 0$. Notice that

$$(x^{-1}y^{-1})xy = (x^{-1}x)(y^{-1}y) = 1 \cdot 1 = 1.$$

Proposition 8.B then implies that $xy \neq 0$ and $(xy)^{-1} = x^{-1}y^{-1}$.

Proposition 8.D: If $x \in \mathbb{R}$ and $x \neq 0$, then $x^{-1} \neq 0$ and $(x^{-1})^{-1} = x$.

Proof. Suppose $x \neq 0$. Note that

$$xx^{-1} = x^{-1}x = 1.$$

Proposition 8.B then implies that $x^{-1} \neq 0$ and $(x^{-1})^{-1} = x$.

Proposition 8.E: If $x \in \mathbb{R}$ and x > 0, then $x^{-1} > 0$.

Proof. Suppose x > 0. We know that $x^{-1}x = 1$. Since x > 0 and 1 > 0, Proposition 8.36 implies $x^{-1} > 0$ as well.

Corollary 8.F: If $x \in \mathbb{R}$ and $x \neq 0$, if $x^{-1} > 0$ then x > 0.

Proof. Suppose $x \neq 0$ and $x^{-1} > 0$. Propositions 8.D and 8.E then imply that $x = (x^{-1})^{-1} > 0$.

Proposition 8.40:

(ii) Let $x, y \in \mathbb{R}$ such that 0 < x < y. Then 0 < 1/y < 1/x.

Proof. Suppose 0 < x < y. Then x^{-1} and y^{-1} are both positive as well, by Proposition 8.E. Since $x^{-1} > 0$,

$$0x^{-1} < xx^{-1} < yx^{-1}$$

That is,

$$0 < 1 < yx^{-1}.$$

Similarly, since $y^{-1} > 0$,

$$0y^{-1} < yx^{-1}y^{-1} < yx^{-1}y^{-1}$$
$$0 < x^{-1} < y^{-1}.$$

So

Proposition 8.43: Let $x, y \in \mathbb{R}$ such that x < y. Then there exists $z \in \mathbb{R}$ such that x < z < y.

Proof. Suppose x < y. Let z = (x + y)/2. Since x < y, 2x = x + x < x + y. Since 2 > 0, $2^{-1} > 0$ as well and

$$2x2^{-1} < (x+y) \cdot 2^{-1}.$$

Hence

$$x < (x + y)/2 = z$$

Similarly, since x < y, x + y < 2y and z = (x + y)/2 < y. Thus x < z < y.

Proposition 8.45: If x_1 and x_2 are least upper bounds for $A \subseteq \mathbb{R}$, then $x_1 = x_2$.

Proof. Suppose x_1 and x_2 are least upper bounds for A. Then they are both upper bounds. Since x_1 is a supremum of A and since x_2 is an upper bound for A, $x_1 \le x_2$. Since x_2 is a supremum of A and since x_1 is an upper bound for A, $x_2 \le x_1$. So $x_1 \le x_2 \le x_1$ and $x_2 = x_1$.

Proposition 8.45: $sup((-\infty, 0)) = 0$

Proof. We need to show that 0 is an upper bound for $(-\infty, 0)$ and that for all upper bounds $y, 0 \leq y$.

Let $x \in (-\infty, 0)$. Then x < 0. So 0 is indeed an upper bound.

Now suppose w < 0. By the previous proposition, there exists $z \in (0, \infty)$ such that w < z < 0. Hence $z \in (-\infty, 0)$ and therefore w is not an upper bound for $(-\infty, 0)$. Thus, if *y* is an upper bound for $(-\infty, 0)$, $y \ge 0$.

Lemma 9.A: Suppose $f : A \to B$ and $g : B \to C$.

- 1. If $g \circ f$ is injective, then f is injective.
- 2. If $g \circ f$ is surjective, then g is surjective.
- 3. If $g \circ f$ is bijective, then f is injective and g is surjective.

Proof. 1) Suppose $g \circ f$ is injective. Suppose $a_1, a_2 \in A$ and $f(a_1) = f(a_2)$. Then $g(f(a_1)) = g(f(a_2))$. That is, $(g \circ f)(a_1) = (g \circ f)(a_2)$. Since $g \circ f$ is injective, $a_1 = a_2$.

2) Suppose $g \circ f$ is surjective. Suppose $c \in C$. Since $g \circ f$ is surjective, there exists $a \in A$ such that $(g \circ f)(a) = c$. Let b = f(a). Then $g(b) = g(f(a)) = (g \circ f)(a) = c$.

3) Suppose $g \circ f$ is bijective. Then it is both injective and surjective. So by parts 1) and 2), f is injective and g is surjective.

Proposition 9.7: (ii) If $f : A \to B$ is surjective, and $G : B \to C$ is surjective, then $g \circ f : A \to C$ is surjective.

Proof. Suppose $f : A \to B$ and $g : B \to C$ are surjective. Let $c \in C$. Since g is surjective, there exists $b \in B$ such that g(b) = c. Since f is surjective there exists $a \in A$ such that f(a) = b. Then $(g \circ f)(a) = g(f(a)) = g(b) = c$.

Proposition 9.11: If $f : A \rightarrow B$ has an inverse function, the inverse function is unique.

Proof. Suppose g_1 and g_2 are inverse functions for f. Let $b \in B$. Then $f(g_1(b)) = b = f(g_2(b))$. Since f has an inverse function it is bijective and in particular injective. So $g_1(b) = g_2(b)$. Hence $g_1 = g_2$.

Proposition 11.3: If $x, y, z \in \mathbb{R}$ with $y \neq 0$ and $z \neq 0$, then

$$\frac{xz}{yz} = \frac{x}{y}.$$

Proof. Suppose $x, y, z \in \mathbb{R}$ with $y \neq 0$ and $z \neq 0$. Then

$$\frac{xz}{yz} = (xz)(yz)^{-1} = (xz)y^{-1}z^{-1} = xy^{-1} = \frac{x}{y}.$$