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This looks long, but most of the proofs are very short!

Proposition 8.A: The number 0 ∈ R does not have a multiplicative inverse.

Proof. Suppose to the contrary that there exists x ∈ R such that x · 0 = 1. Proposition 8.15
implies that x · 1 = 0. Hence 1 = 0, which contradicts Axiom 8.3. □

Proposition 8.B: If c, x ∈ R and cx = 1, then x , 0 and c = x−1.

Proof. Suppose c, x ∈ R and cx = 1. Since 1 , 0, by the contrapositive of Proposition
8.23, c , 0 and x , 0. Since x , 0, it has a multiplicative inverse x−1. Since cx = 1 and
x−1x = 1,

cx = x−1x.

Multiplying this equation on the right by x−1 and applying Axiom 8.5 to both sides we
conclude that c = x−1. □

Proposition 8.C: If x, y ∈ R and x , 0 and y , 0, then xy , 0 and (xy)−1 = x−1y−1.

Proof. Suppose x, y ∈ R and x , 0 and y , 0. Notice that

(x−1y−1)xy = (x−1x)(y−1y) = 1 · 1 = 1.

Proposition 8.B then implies that xy , 0 and (xy)−1 = x−1y−1. □

Proposition 8.D: If x ∈ R and x , 0, then x−1 , 0 and (x−1)−1 = x.

Proof. Suppose x , 0. Note that

xx−1 = x−1x = 1.

Proposition 8.B then implies that x−1 , 0 and (x−1)−1 = x. □

Proposition 8.E: If x ∈ R and x > 0, then x−1 > 0.

Proof. Suppose x > 0. We know that x−1x = 1. Since x > 0 and 1 > 0, Proposition 8.36
implies x−1 > 0 as well. □

Corollary 8.F: If x ∈ R and x , 0, if x−1 > 0 then x > 0.

Proof. Suppose x , 0 and x−1 > 0. Propositions 8.D and 8.E then imply that x = (x−1)−1 >
0. □

Proposition 8.40:
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(ii) Let x, y ∈ R such that 0 < x < y. Then 0 < 1/y < 1/x.

Proof. Suppose 0 < x < y. Then x−1 and y−1 are both positive as well, by Proposition 8.E.
Since x−1 > 0,

0x−1 < xx−1 < yx−1.

That is,
0 < 1 < yx−1.

Similarly, since y−1 > 0,
0y−1 < yx−1y−1 < yx−1y−1.

So
0 < x−1 < y−1.

□

Proposition 8.43: Let x, y ∈ R such that x < y. Then there exists z ∈ R such that
x < z < y.

Proof. Suppose x < y. Let z = (x + y)/2. Since x < y, 2x = x + x < x + y. Since 2 > 0,
2−1 > 0 as well and

2x2−1 < (x + y) · 2−1.

Hence
x < (x + y)/2 = z.

Similarly, since x < y, x + y < 2y and z = (x + y)/2 < y. Thus x < z < y. □

Proposition 8.45: If x1 and x2 are least upper bounds for A ⊆ R, then x1 = x2.

Proof. Suppose x1 and x2 are least upper bounds for A. Then they are both upper bounds.
Since x1 is a supremum of A and since x2 is an upper bound for A, x1 ≤ x2. Since x2 is
a supremum of A and since x1 is an upper bound for A, x2 ≤ x1. So x1 ≤ x2 ≤ x1 and
x2 = x1. □

Proposition 8.45: sup((−∞, 0)) = 0

Proof. We need to show that 0 is an upper bound for (−∞, 0) and that for all upper bounds
y, 0 ≤ y.

Let x ∈ (−∞, 0). Then x < 0. So 0 is indeed an upper bound.

Now suppose w < 0. By the previous proposition, there exists z ∈ (0,∞) such that
w < z < 0. Hence z ∈ (−∞, 0) and therefore w is not an upper bound for (−∞, 0). Thus, if
y is an upper bound for (−∞, 0), y ≥ 0. □

Lemma 9.A: Suppose f : A→ B and g : B→ C.
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1. If g ◦ f is injective, then f is injective.

2. If g ◦ f is surjective, then g is surjective.

3. If g ◦ f is bijective, then f is injective and g is surjective.

Proof. 1) Suppose g◦ f is injective. Suppose a1, a2 ∈ A and f (a1) = f (a2). Then g( f (a1)) =
g( f (a2)). That is, (g ◦ f )(a1) = (g ◦ f )(a2). Since g ◦ f is injective, a1 = a2.

2) Suppose g ◦ f is surjective. Suppose c ∈ C. Since g ◦ f is surjective, there exists
a ∈ A such that (g ◦ f )(a) = c. Let b = f (a). Then g(b) = g( f (a)) = (g ◦ f )(a) = c.

3) Suppose g ◦ f is bijective. Then it is both injective and surjective. So by parts 1) and
2), f is injective and g is surjective. □

Proposition 9.7: (ii) If f : A → B is surjective, and G : B → C is surjective, then
g ◦ f : A→ C is surjective.

Proof. Suppose f : A → B and g : B → C are surjective. Let c ∈ C. Since g is surjective,
there exists b ∈ B such that g(b) = c. Since f is surjective there exists a ∈ A such that
f (a) = b. Then (g ◦ f )(a) = g( f (a)) = g(b) = c. □

Proposition 9.11: If f : A→ B has an inverse function, the inverse function is unique.

Proof. Suppose g1 and g2 are inverse functions for f . Let b ∈ B. Then f (g1(b)) = b =
f (g2(b)). Since f has an inverse function it is bijective and in particular injective. So
g1(b) = g2(b). Hence g1 = g2. □

Proposition 11.3: If x, y, z ∈ R with y , 0 and z , 0, then

xz
yz
=

x
y
.

Proof. Suppose x, y, z ∈ R with y , 0 and z , 0. Then

xz
yz
= (xz)(yz)−1 = (xz)y−1z−1 = xy−1 =

x
y
.

□
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