This looks long, but most of the proofs are very short!

Proposition 8.A: The number $0 \in \mathbb{R}$ does not have a multiplicative inverse.
Proof.
Proposition 8.B: If $c, x \in \mathbb{R}$ and $c x=1$, then $x \neq 0$ and $c=x^{-1}$.

Proof.
Proposition 8.C: If $x, y \in \mathbb{R}$ and $x \neq 0$ and $y \neq 0$, then $x y \neq 0$ and $(x y)^{-1}=x^{-1} y^{-1}$.
Proof.

Proposition 8.D: If $x \in \mathbb{R}$ and $x \neq 0$, then $x^{-1} \neq 0$ and $\left(x^{-1}\right)^{-1}=x$.
Proof.

Proposition 8.E: If $x \in \mathbb{R}$ and $x>0$, then $x^{-1}>0$.

Proof.

Corollary 8.F: If $x \in \mathbb{R}$ and $x \neq 0$, if $x^{-1}>0$ then $x>0$.

Proof.

Proposition 8.40:

(ii) Let $x, y \in \mathbb{R}$ such that $0<x<y$. Then $0<1 / y<1 / x$.

Proof. Be sure to take advantage of Propositions 2A-2H as well as the work you've just done to make for a very short proof.

Proposition 8.43: Let $x, y \in \mathbb{R}$ such that $x<y$. Then there exists $z \in \mathbb{R}$ such that $x<z<y$.

Proof.

Proposition 8.45: If x_{1} and x_{2} are least upper bounds for $A \subseteq \mathbb{R}$, then $x_{1}=x_{2}$.
Proof.

Proposition 8.45: $\sup ((-\infty, 0))=0$
Proof.

Lemma 9.A: Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$.

1. If $g \circ f$ is injective, then f is injective.
2. If $g \circ f$ is surjective, then g is surjective.
3. If $g \circ f$ is bijective, then f is injective and g is surjective.

Proof.

Proposition 9.7: (ii) If $f: A \rightarrow B$ is surjective, and $G: B \rightarrow C$ is surjective, then $g \circ f: A \rightarrow C$ is surjective.

Proof.

Proposition 9.11: If $f: A \rightarrow B$ has an inverse function, the inverse function is unique.

Proof.

Proposition 11.3: If $x, y, z \in \mathbb{R}$ with $y \neq 0$ and $z \neq 0$, then

$$
\frac{x z}{y z}=\frac{x}{y} .
$$

Proof. Your proof goes here.

