Project 6.27: Finish your work on this project. Specifically, state and prove a proposition that characterizes the set of $n \ge 2$ such that \mathbb{Z}_n satisfies the cancellation property (Axiom 1.5). You can opt to prove either Axiom 1.5 or its equivalent version Proposition 1.26.

Proposition 6.27: Let $n \in \mathbb{Z}_{\geq 2}$. Then \mathbb{Z}_n satisfies Proposition 1.26 if and only if *n* is prime.

Proof. Suppose *n* is prime. Suppose $a, b \in \mathbb{Z}$ and

[a][b] = [0].

Recall that [a][b] = [ab]. Hence [ab] = [0] and $ab \equiv 0 \pmod{n}$. Hence $n \mid ab$. Since n is prime, by Euclid's Lemma, either $n \mid a$ or $n \mid b$. Hence either $a \equiv 0 \pmod{n}$ or $b \equiv 0 \pmod{n}$. So either [a] = [0] or [b] = [0].

We prove the converse using the contrapositive. Suppose *n* is not prime; we will show that there are nonzero equivalence classes that have a product that is [0]. Since $n \ge 2$ is not prime, there exists $a \in \mathbb{Z}$ such that $2 \le a \le n - 1$ and $a \mid n$. So there exists $b \in \mathbb{Z}$ such that n = ab. By Lemma 6.A proved below, it follows that $2 \le b \le n - 1$ as well. Since $0 \le a \le n - 1$ and $a \ne 0$, Proposition 6.24(ii) implies that $[a] \ne [0]$. Similarly, $[b] \ne [0]$. Nevertheless,

$$[a][b] = [ab] = [n] = [0],$$

so Proposition 1.26 fails.

Lemma 6.B: Suppose $a, b \in \mathbb{Z}, g \in \mathbb{Z}_{\geq 0}$, and

- (1) $g \mid a \text{ and } g \mid b$
- (2) For all $d \in \mathbb{Z}$ such that $d \mid a$ and $d \mid b, d \mid g$.

Then $g = \gcd(a, b)$.

Proof. Your proof goes here.

Proof. Suppose $a, b \in \mathbb{Z}, g \ge 0$, and g satisfies items (1) and (2).

Let G = gcd(a, b), and recall from Proposition 6.26 that G also satisfies conditions (1) and (2). Since $G \mid a$ and $G \mid b$, it follows from condition (2) that $G \mid g$. Since $g \mid a$ and $g \mid b$, it follows from condition (2) that $g \mid G$.

Now either g = 0 or g > 0. If g = 0, since $g \mid G, G = 0$ as well and g = G = gcd(a, b). Suppose g > 0. Since $G \mid g, G \neq 0$ and hence G > 0. Since $g, G \in \mathbb{N}$ and $g \mid G, g \leq G$. Similarly, $G \leq g$. So g = G = gcd(a, b).

Lemma 6.C: Suppose p is prime and $a \in \mathbb{Z}$. Then either $p \mid a$ or gcd(p, a) = 1.

Proof. Suppose p is prime and $a \in \mathbb{Z}$. Let g = gcd(p, a). Then $g \mid p$ and $g \mid a$. Note that $g \ge 0$ by definition, and $g \ne 0$ since $p \ne 0$. So $g \in \mathbb{N}$. Since p is prime, either g = 1 or g = p. If g = 1, then gcd(p, a) = 1. If g = p then, since $g \mid a, p \mid a$.

Lemma 6.30a: For all $a, b \in \mathbb{Z}$,

$$gcd(a,b) = gcd(-a,b) = gcd(a,-b) = gcd(-a,-b).$$
(1)

Proof. We will first prove that for all $a, b \in \mathbb{Z}$ that gcd(a, b) = gcd(-a, b).

Let $a, b \in \mathbb{Z}$. If a = b = 0, the result is trivial since all expressions in equation (??) are zero. So suppose $a \neq 0$ or $b \neq 0$ so that gcd(a, b) is the least element of $S_{a,b}$ and gcd(-a, b) is the least element of $S_{-a,b}$. We will show that $S_{a,b} = S_{-a,b}$ to conclude, from the uniqueness of least elements, that gcd(a, b) = gcd(-a, b).

Suppose $x \in S_{a,b}$. Then $x \in \mathbb{N}$ and there exist integers *i* and *j* such that x = ai + bj. Hence x = (-a)(-i) + bj. This shows that $x \in S_{-a,b}$ as well. Hence $S_{a,b} \subseteq S_{-a,b}$. The proof that $S_{-a,b} \subseteq S_{a,b}$ is completely similar. Hence $S_{a,b} = S_{-a,b}$ as claimed.

We now establish the remaining equalities in (??). Let $a, b \in \mathbb{Z}$. Observe from the symmetry of gcd and the result we just proved (applied twice!) that

$$gcd(a,b) = gcd(b,a) = gcd(-b,a) = gcd(a,-b) = gcd(-a,-b).$$

Proposition 6.30: For all $k, m, n \in \mathbb{Z}$,

$$gcd(km, kn) = |k| gcd(m, n)$$

Proof. Let k, m, and $n \in \mathbb{Z}$. If k = 0 or both m = n = 0, then

$$gcd(km, kn) = |k| gcd(m, n)$$

since both sides of this equation are zero. Hence we may assume that $k \neq 0$ and at least one of *m* or *n* is nonzero.

We first assume that k > 0. Let g = gcd(m, n) and let G = gcd(km, kn). We wish to show that G = kg. Since g = gcd(m, n), there exist integers a and b such that g = am + bn. Hence kg = a(km) + b(kn). Since $g \in \mathbb{N}$ and $k \in \mathbb{N}$, $kg \in \mathbb{N}$ as well. Thus $kg \in S_{km,kn}$. Since G is the least element of $S_{km,kn}$ we conclude that $G \leq kg$. On the other hand, since $g \mid m$ and $g \mid n$, it follows that $kg \mid km$ and $kg \mid kn$ as well. But then $kg \mid G$ by Proposition 6.29(iii). Since kg and G are both natural numbers, we conclude that $kg \leq G$. Since $kg \geq G$ as well, kg = G.

Now suppose k < 0. Then -k > 0 and hence from Lemma 6.30a and the result we just proved,

$$gcd(km, kn) = gcd(-km, -kn) = (-k)gcd(m, n) = |k|gcd(m, n).$$