Proposition HW10.1: Let A be a set, and let \sim be an equivalence relation on A. Then the equivalence classes of \sim form a partition of A.

Proof. We need to prove the following:

1. For all $a \in A$, there exists $x \in A$ such that $a \in[x]$
2. For all $a, b \in A$, if $[a] \neq[b]$, then $[a] \cap[b]=\emptyset$.
1) Let $a \in A$. Since $a \sim a, a \in[a]$.
2) Let $a, b \in A$, and suppose $[a] \cap[b] \neq \emptyset$. Then there exists $c \in[a] \cap[b]$. Since $c \in[a], c \sim a$. Similarly, $c \sim b$. But then $a \sim b$ and $[a]=[b]$ by Proposition 6.4 (ii).

Proposition HW10.2: Let A and B be sets. Then

$$
(A \cup B) \backslash B \subseteq A
$$

Proof. Suppose $a \in(A \cup B) \backslash B$. The $a \in(A \cup B)$ and $a \notin B$. Since $a \in(A \cup B)$, either $a \in A$ or $a \in B$. Since $a \notin B$, we conclude $a \in A$. Hence $(A \cup B) \backslash B \subseteq A$.

Lemma 6.13c: Let $n \in \mathbb{N}$. Suppose that q and r are integers such that $0 \leq r \leq n-1$ and

$$
q n+r=0 .
$$

Then $q=0$ and $r=0$.

Proof. Let $n \in \mathbb{Z}$. Suppose $q, r \in \mathbb{Z}, 0 \leq r \leq n-1$, and $n q+r=0$. Hence $r=-q n$ and in particular $n \mid r$. Suppose to produce a contradiction that $n \neq 0$. Then, since $0 \leq r$, we conclude that $r \in \mathbb{N}$. Since $n \in \mathbb{N}$ and $n \mid r$, Proposition 2.33 implies $n \leq r$. But $r \leq n-1<n$. This is a contradiction. Hence $r=0$. But then

$$
0=q n+r=q n+0=q n .
$$

Proposition 1.26 then implies either $q=0$ or $n=0$. Since $n \in \mathbb{N}$, we conclude that $q=0$.

Proposition 6.25: If $a \equiv a^{\prime}(\bmod n)$ and $b \equiv b^{\prime}(\bmod n)$ then

$$
a+b \equiv a^{\prime}+b^{\prime} \quad(\bmod n)
$$

and

$$
a b \equiv a^{\prime} b^{\prime} \quad(\bmod n)
$$

Proof. Suppose $a \equiv a^{\prime}(\bmod n)$ and $b \equiv b^{\prime}(\bmod n)$. Then $n \mid\left(a-a^{\prime}\right)$ and $n \mid\left(b-b^{\prime}\right)$. So there exists integers j and k such that $a-a^{\prime}=n j$ and $b-b^{\prime}=n k$. Note that

$$
(a+b)-\left(a^{\prime}+b^{\prime}\right)=\left(a-a^{\prime}\right)+\left(b-b^{\prime}\right)=n j+n k=n(j+k) .
$$

Hence $n \mid(a+b)-\left(a^{\prime}+b^{\prime}\right)$ and

$$
a+b \equiv a^{\prime}+b^{\prime} \quad(\bmod n) .
$$

Moreover,

$$
\begin{aligned}
a b-a^{\prime} b^{\prime} & =a b-a b^{\prime}+a b^{\prime}-a^{\prime} b^{\prime} \\
& =a\left(b-b^{\prime}\right)+\left(a-a^{\prime}\right) b^{\prime} \\
& =a n k+n j b^{\prime} \\
& =\left(a k+j b^{\prime}\right) n .
\end{aligned}
$$

So $n \mid\left(a b-a^{\prime} b^{\prime}\right)$ and $a b \equiv a^{\prime} b^{\prime}(\bmod n)$.

Lemma HW10.3: Suppose $n \in \mathbb{N}, a, b \in \mathbb{Z}, 2 \leq a \leq n-1$, and $a b=n$. Then

$$
2 \leq b \leq n-1 .
$$

Proof. Since $a b=n$ and since $a, n \in \mathbb{N}$, it follows that $b \in \mathbb{N}$. Since $b \in \mathbb{N}$ and $b \mid n, b \leq n$.
So $1 \leq b \leq n$. We will show that $b \neq 1$ and $b \neq n$, from which it follows that $2 \leq b \leq n-1$.
Suppose to the contrary that $b=1$. Then

$$
n=a b=a 1=a .
$$

So $a=n$, which is a contradiction.
Suppose to the contrary that $b=n$. Then

$$
1 \cdot n=n=a b=a n .
$$

Since $n \neq$, by multiplicative cancellation, $a=1$. But $a \neq 1$, so this is also a contradiction.

Proposition 6.28: Every integer greater than or equal to 2 can be factored in to primes.

Proof. We will prove by strong induction that every integer $n \geq 2$ admits a prime factorization. Suppose for some $n \geq 2$ that every integer k such that $2 \leq k<n-1$ admits a prime factorization. We wish to show that n also admits a prime factorization. If n is prime then it admits a trivial factorization. Suppose n is composite. Then there exists $a \in \mathbb{Z}$ such that $2 \leq a \leq n-1$ and $a \mid n$. Since $a \mid n$ there exists $b \in \mathbb{Z}$ such that $a b=n$. Lemma 6.A implies $2 \leq b \leq n-1$. By the induction hypothesis, both a and b admit prime factorizations. But then so does n : it is the product of the prime factorizations of a and b.

