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Proposition HW10.1: Let A be a set, and let ∼ be an equivalence relation on A. Then the
equivalence classes of ∼ form a partition of A.

Proof . We need to prove the following:

1. For all a ∈ A, there exists x ∈ A such that a ∈ [x]

2. For all a, b ∈ A, if [a] , [b], then [a] ∩ [b] = ∅.

1) Let a ∈ A. Since a ∼ a, a ∈ [a].

2) Let a, b ∈ A, and suppose [a] ∩ [b] , ∅. Then there exists c ∈ [a] ∩ [b]. Since
c ∈ [a], c ∼ a. Similarly, c ∼ b. But then a ∼ b and [a] = [b] by Proposition 6.4
(ii). □

Proposition HW10.2: Let A and B be sets. Then

(A ∪ B) \ B ⊆ A.

Proof . Suppose a ∈ (A∪ B) \ B. The a ∈ (A∪ B) and a < B. Since a ∈ (A∪ B), either
a ∈ A or a ∈ B. Since a < B, we conclude a ∈ A. Hence (A ∪ B) \ B ⊆ A. □

Lemma 6.13c: Let n ∈ N. Suppose that q and r are integers such that 0 ≤ r ≤ n − 1 and

qn + r = 0.

Then q = 0 and r = 0.

Proof . Let n ∈ Z. Suppose q, r ∈ Z, 0 ≤ r ≤ n − 1, and nq + r = 0. Hence r = −qn
and in particular n | r. Suppose to produce a contradiction that n , 0. Then, since
0 ≤ r, we conclude that r ∈ N. Since n ∈ N and n | r, Proposition 2.33 implies n ≤ r.
But r ≤ n − 1 < n. This is a contradiction. Hence r = 0. But then

0 = qn + r = qn + 0 = qn.

Proposition 1.26 then implies either q = 0 or n = 0. Since n ∈ N, we conclude that
q = 0. □

Proposition 6.25: If a ≡ a′ (mod n) and b ≡ b′ (mod n) then

a + b ≡ a′ + b′ (mod n)

and
ab ≡ a′b′ (mod n).
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Proof. Suppose a ≡ a′ (mod n) and b ≡ b′ (mod n). Then n | (a − a′) and n | (b − b′). So
there exists integers j and k such that a − a′ = n j and b − b′ = nk. Note that

(a + b) − (a′ + b′) = (a − a′) + (b − b′) = n j + nk = n( j + k).

Hence n | (a + b) − (a′ + b′) and

a + b ≡ a′ + b′ (mod n).

Moreover,

ab − a′b′ = ab − ab′ + ab′ − a′b′

= a(b − b′) + (a − a′)b′

= ank + n jb′

= (ak + jb′)n.

So n | (ab − a′b′) and ab ≡ a′b′ (mod n). □

Lemma HW10.3: Suppose n ∈ N, a, b ∈ Z, 2 ≤ a ≤ n − 1, and ab = n. Then

2 ≤ b ≤ n − 1.

Proof. Since ab = n and since a, n ∈ N, it follows that b ∈ N. Since b ∈ N and b | n, b ≤ n.
So 1 ≤ b ≤ n. We will show that b , 1 and b , n, from which it follows that 2 ≤ b ≤ n− 1.

Suppose to the contrary that b = 1. Then

n = ab = a1 = a.

So a = n, which is a contradiction.

Suppose to the contrary that b = n. Then

1 · n = n = ab = an.

Since n ,, by multiplicative cancellation, a = 1. But a , 1, so this is also a contradiction.
□

Proposition 6.28: Every integer greater than or equal to 2 can be factored in to primes.

Proof. We will prove by strong induction that every integer n ≥ 2 admits a prime factor-
ization. Suppose for some n ≥ 2 that every integer k such that 2 ≤ k < n− 1 admits a prime
factorization. We wish to show that n also admits a prime factorization. If n is prime then
it admits a trivial factorization. Suppose n is composite. Then there exists a ∈ Z such that
2 ≤ a ≤ n− 1 and a | n. Since a | n there exists b ∈ Z such that ab = n. Lemma 6.A implies
2 ≤ b ≤ n − 1. By the induction hypothesis, both a and b admit prime factorizations. But
then so does n: it is the product of the prime factorizations of a and b. □
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