Proof. We need to prove the following:

- 1. For all $a \in A$, there exists $x \in A$ such that $a \in [x]$
- 2. For all $a, b \in A$, if $[a] \neq [b]$, then $[a] \cap [b] = \emptyset$.
 - 1) Let $a \in A$. Since $a \sim a, a \in [a]$.

2) Let $a, b \in A$, and suppose $[a] \cap [b] \neq \emptyset$. Then there exists $c \in [a] \cap [b]$. Since $c \in [a], c \sim a$. Similarly, $c \sim b$. But then $a \sim b$ and [a] = [b] by Proposition 6.4 (ii).

Proposition HW10.2: Let *A* and *B* be sets. Then

$$(A \cup B) \setminus B \subseteq A.$$

Proof. Suppose $a \in (A \cup B) \setminus B$. The $a \in (A \cup B)$ and $a \notin B$. Since $a \in (A \cup B)$, either $a \in A$ or $a \in B$. Since $a \notin B$, we conclude $a \in A$. Hence $(A \cup B) \setminus B \subseteq A$.

Lemma 6.13c: Let $n \in \mathbb{N}$. Suppose that q and r are integers such that $0 \le r \le n - 1$ and

$$qn + r = 0$$

Then q = 0 and r = 0.

Proof. Let $n \in \mathbb{Z}$. Suppose $q, r \in \mathbb{Z}$, $0 \le r \le n - 1$, and nq + r = 0. Hence r = -qn and in particular $n \mid r$. Suppose to produce a contradiction that $n \ne 0$. Then, since $0 \le r$, we conclude that $r \in \mathbb{N}$. Since $n \in \mathbb{N}$ and $n \mid r$, Proposition 2.33 implies $n \le r$. But $r \le n - 1 < n$. This is a contradiction. Hence r = 0. But then

$$0 = qn + r = qn + 0 = qn.$$

Proposition 1.26 then implies either q = 0 or n = 0. Since $n \in \mathbb{N}$, we conclude that q = 0.

Proposition 6.25: If $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$ then

$$a + b \equiv a' + b' \pmod{n}$$

and

$$ab \equiv a'b' \pmod{n}$$
.

April 3, 2013

$$(a+b) - (a'+b') = (a-a') + (b-b') = nj + nk = n(j+k).$$

Hence n | (a + b) - (a' + b') and

$$a + b \equiv a' + b' \pmod{n}$$
.

Moreover,

$$ab - a'b' = ab - ab' + ab' - a'b'$$
$$= a(b - b') + (a - a')b'$$
$$= ank + njb'$$
$$= (ak + jb')n.$$

So $n \mid (ab - a'b')$ and $ab \equiv a'b' \pmod{n}$.

Lemma HW10.3: Suppose $n \in \mathbb{N}$, $a, b \in \mathbb{Z}$, $2 \le a \le n - 1$, and ab = n. Then

$$2 \le b \le n-1.$$

Proof. Since ab = n and since $a, n \in \mathbb{N}$, it follows that $b \in \mathbb{N}$. Since $b \in \mathbb{N}$ and $b \mid n, b \leq n$. So $1 \leq b \leq n$. We will show that $b \neq 1$ and $b \neq n$, from which it follows that $2 \leq b \leq n - 1$.

Suppose to the contrary that b = 1. Then

$$n = ab = a1 = a.$$

So a = n, which is a contradiction.

Suppose to the contrary that b = n. Then

$$1 \cdot n = n = ab = an.$$

Since $n \neq$, by multiplicative cancellation, a = 1. But $a \neq 1$, so this is also a contradiction.

Proposition 6.28: Every integer greater than or equal to 2 can be factored in to primes.

Proof. We will prove by strong induction that every integer $n \ge 2$ admits a prime factorization. Suppose for some $n \ge 2$ that every integer k such that $2 \le k < n-1$ admits a prime factorization. We wish to show that n also admits a prime factorization. If n is prime then it admits a trivial factorization. Suppose n is composite. Then there exists $a \in \mathbb{Z}$ such that $2 \le a \le n-1$ and $a \mid n$. Since $a \mid n$ there exists $b \in \mathbb{Z}$ such that ab = n. Lemma 6.A implies $2 \le b \le n-1$. By the induction hypothesis, both a and b admit prime factorizations. But then so does n: it is the product of the prime factorizations of a and b.