Proposition HW10.1: Let *A* be a set, and let \sim be an equivalence relation on *A*. Then the equivalence classes of \sim form a partition of *A*.

April 5, 2013

Proposition HW10.2: Let *A* and *B* be sets. Then

$$(A \cup B) \setminus B \subseteq A.$$

Proof.

Lemma 6.13c: Let $n \in \mathbb{N}$. Suppose that q and r are integers such that $0 \le r \le n-1$ and

$$qn+r=0$$

Then q = 0 and r = 0.

Proof.

Proposition 6.25: If $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$ then

$$a+b\equiv a'+b'\pmod{n}$$

and

$$ab \equiv a'b' \pmod{n}$$
.

Proof.

Lemma HW10.3: Suppose $n \in \mathbb{N}$, $a, b \in \mathbb{Z}$, $2 \le a \le n - 1$, and ab = n. Then

 $2 \le b \le n - 1.$

Proof.

Proposition 6.28: Every integer greater than or equal to 2 can be factored in to primes.

Proof. Wait until after Monday to start this one. \Box