Axiom 1.1-1.5: Axioms regarding the integers: arithmetic, additive and multiplicative identities, additive inverses, and multiplicative cancellation.

Proposition 1.6: If m, n, and p are integers, then $(m+n) \cdot p=m \cdot p+n \cdot p$.

Proposition 1.7: If m is an integer, then $0+m=m$ and $1 \cdot m=m$.

Proposition 1.8: If m is an integer, then $(-m)+m=0$.

Proposition 1.9: Let m, n, and p be integers. If $m+n=n+p$ then $n=p$.
Proposition 1.10: Let $m, x_{1}, x_{2} \in \mathbb{Z}$. If $m+x_{1}=0$ and $m+x_{2}=0$ then $x 1=x 2$.

Proposition 1.11: If m, n, p, and q are integers then
(i) $(m+n)(p+q)=(m p+n p)+(m q+n q)$
(ii) $(m+n)+(p+q)=m+(n+(p+q))=((m+n)+p)+q$
(iii) $m+(n+p)=(p+m)+n$
(iv) $m(n p)=p(m n)$
(v) $m(n+(p+q))=(m n+m p)+m q$
(vi) $(m(n+p)) q=(m n) q+m(p q)$

Proposition 1.12: Let $x \in \mathbb{Z}$. If x has the property that for each integer $m, m+x=m$, then $x=0$.

Proposition 1.13: Let $x \in \mathbb{Z}$. If x has the property that there exists an integer m such that $m+x=m$, then $x=0$.

Proposition 1.14: For all $m \in \mathbb{Z}, m \cdot 0=0 \cdot m=0$.

Proposition 1.16: If m and n are even integers, then so are $m+n$ and $m \cdot n$.

Proposition 1.17:

(i) 0 is divisible by every integer.
(ii) If m is an integer not equal to 0 , then m is not divisible by 0 .

Proposition 1.18: Let $x \in \mathbb{Z}$. If x has the property that for each integer $m, m \cdot x=m$, then $x=1$.

Proposition 1.19: Let $x \in \mathbb{Z}$. If x has the property that there exists a non-zero integer m such that $m \cdot x=m$, then $x=1$.

Proposition 1.20: For all $m, n \in \mathbb{Z},(-m) \cdot(-n)=m \cdot n$.

Corollary 1.21: $(-1) \cdot(-1)=1$.

Proposition 1.22:

(i) For all $m \in \mathbb{Z},-(-m)=m$.
(ii) $-0=0$.

Proposition 1.23: Given $m, n \in \mathbb{Z}$, there exists one and only on $x \in \mathbb{Z}$ such that $m+x=n$
Proposition 1.24: Let $x \in \mathbb{Z}$. If $x \cdot x=0$ then $x=0$ or $x=1$.

Proposition 1.25: For all $m, n \in \mathbb{Z}$.
(i) $-(m+n)=(-m)+(-n)$
(ii) $-m=(-1) \cdot m$
(iii) $(-m) n=m(-n)=-(m n)$

Proposition 1.26: Let $m, n \in \mathbb{Z}$. If $m n=0$ then $m=0$ or $n=0$.

Proposition 1.27: For all $m, n, p, q \in \mathbb{Z}$:
(i) $(m-n)+(p-q)=(m+p)-(n+q)$
(ii) $(m-n)-(p-q)=(m+q)-(n+p)$
(iii) $(m-n)(p-q)=(m p+n q)-(m q+n p)$
(iv) $m-n=p-q$ if and only if $m+q=n+p$
(v) $(m-n) p=m p-n p$

