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Recall that if {xn}∞n=1 is a sequence of 0’s and 1’s, we define sn =
∑n

k=1 xk/2k. We set
S = {sn : n ∈ N} and we define ⟨xn⟩∞n=1 = sup S . In class we showed that S is non-empty
and bounded above by 1 and hence S really does have a supremum. We say that {xn}∞n=1 is
a binary expansion of the real number ⟨xn⟩∞n=1.

In these notes we show that every number in [0, 1] admits a binary expansion, and that these
expansions are essentially unique.

Proposition Binary 1: For every z ∈ [0, 1], there is a sequence {xn}∞n=1 of 0’s and 1’s such
that

⟨xn⟩∞n=1 = z.

Proof. Let z ∈ [0, 1]. We construct a recursively defined sequence as follows. If z < 1/2,
we set x1 = 0, otherwise x1 = 1. Supposing x1 through xn have been defined, we set
sn =
∑n

k=1 xk/2k and set

xn+1 =

0 x < sn +
1

2n+1

1 otherwise.

We claim that for every n,

sn ≤ x ≤ sn +
1
2n

The proof is by induction on n. Suppose n = 1. We consider the cases 0 ≤ x < 1/2 and
1/2 ≤ x ≤ 1 separately. Suppose 0 ≤ x < 1/2. Then s1 = 0 and hence

s1 = 0 ≤ x < 1/2 = 0 + 1/2 = s1 + 1/2

as desired. Suppose 1/2 ≤ x ≤ 1. Then s1 = 1/2. So

s1 =
1
2
≤ x ≤ 1 =

1
2
+

1
2
= s1 +

1
2

as well. This establishes the base case.

Suppose for some n ∈ N that

sn ≤ x ≤ sn +
1
2n .

Recall that

xn+1 =

0 x < sn +
1

2n+1

1 otherwise.

We consider two cases. Suppose x < sn + 1/2n+1. Then xn+1 = 0 and sn+1 = sn. From the
induction hypothesis we then conclude that

sn+1 = sn ≤ x ≤ sn +
1

2n+1 = sn+1 +
1

2n+1 .
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Now suppose x ≥ sn + 1/2n+1. Then sn+1 = sn + 1/2n+1. But then again by the induction
hypothesis

sn+1 = sn +
1

2n+1 ≤ x ≤ sn +
1
2n = sn +

1
2n+1 +

1
2n+1 = sn+1 +

1
2n+1 .

Having established the claim, we now prove that ⟨xn⟩∞n=1 = x. Let S = {sn : n ∈ N} so
⟨xn⟩∞n=1 = sup S . Since sn ≤ x for every n, we know that x is an upper bound for S . Now
suppose y < x. Then x − y > 0 and there exists n ∈ N such that 1/2n < x − y. Since

x ≤ sn +
1
2n < sn + x − y

we may add y − x to both sides of the inequality to conclude that

y < sn.

So y is not an upper bound for S . Thus every upper bound z for S satisfies x ≤ z and
x = sup S . □

Hence we have shown that every z ∈ [0, 1] admits a binary expansion. The next proposition
shows that most of the time, different sequences lead to different numbers in [0, 1]. The
only way two different expansions generate the same real number is when one expansion is

0.x1 · · · xN−10111 · · ·

and the second is
0.x1 · · · xN−11000 · · · .

Proposition Binary 2: Suppose {xn} and {yn} are distinct sequences of 0’s and 1’s and let
N be the first index where xn , yn, and suppose that xN = 0 and yN = 1. If

⟨xn⟩∞n=1 = ⟨yn⟩∞n=1

then xn = 1 for all n > N and yn = 0 for all n > N.

Proof. We start by establishing some notation. Let

X = ⟨xn⟩∞n=1 , Y = ⟨yn⟩∞n=1 .

Let sn =
∑n

k=1 xk/2k and let tn =
∑n

k=1 xk/2k, and let S = {sn : n ∈ N and T = tn : n ∈ N.
Then X = sup S and Y = sup T .

Since xk = yk for k < N, and since xN = 0 and yN = 1,

TN = sN +
1

2N .
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Suppose for some m > N that ym = 1 or xm = 0. Then for n > m

n∑
k=N+1

xk − yk

2k ≤
 n∑

k=N+1

1 − 0
2k

 − 1
2m

=
1

2N

n−N∑
k=N

1
2k

 − 1
2m

<
1

2N · 1 −
1

2m .

Hence if n > m,

tn − sn = tN − sN −
n∑

k=N+1

xk − yk

2k =
1

2N −
n∑

k=N+1

xk − yk

2k >
1

2N −
1

2N +
1

2m =
1

2m .

That is, if n > m, then

tn > sn +
1

2m .

Since Y is the supremum of the set T , Y ≥ tn for all n and

Y ≥ sn +
1

2m

for all n > m. Since the sequence {sn} is increasing we conclude that this same inequality
holds for all n ∈ N hance hence Y − 1

2m is an upper bound for the set S . But then

Y − 1
2m ≥ sup S = X

and therefore Y > X. Thus, if Y = X, we conclude that for all n > N, xn = 1 and yn = 0. □
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