Recall that if $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence of 0 's and 1's, we define $s_{n}=\sum_{k=1}^{n} x_{k} / 2^{k}$. We set $S=\left\{s_{n}: n \in \mathbb{N}\right\}$ and we define $\left\langle x_{n}\right\rangle_{n=1}^{\infty}=\sup S$. In class we showed that S is non-empty and bounded above by 1 and hence S really does have a supremum. We say that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a binary expansion of the real number $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$.

In these notes we show that every number in $[0,1]$ admits a binary expansion, and that these expansions are essentially unique.

Proposition Binary 1: For every $z \in[0,1]$, there is a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of 0 's and 1's such that

$$
\left\langle x_{n}\right\rangle_{n=1}^{\infty}=z .
$$

Proof. Let $z \in[0,1]$. We construct a recursively defined sequence as follows. If $z<1 / 2$, we set $x_{1}=0$, otherwise $x_{1}=1$. Supposing x_{1} through x_{n} have been defined, we set $s_{n}=\sum_{k=1}^{n} x_{k} / 2^{k}$ and set

$$
x_{n+1}= \begin{cases}0 & x<s_{n}+\frac{1}{2^{n+1}} \\ 1 & \text { otherwise } .\end{cases}
$$

We claim that for every n,

$$
s_{n} \leq x \leq s_{n}+\frac{1}{2^{n}}
$$

The proof is by induction on n. Suppose $n=1$. We consider the cases $0 \leq x<1 / 2$ and $1 / 2 \leq x \leq 1$ separately. Suppose $0 \leq x<1 / 2$. Then $s_{1}=0$ and hence

$$
s_{1}=0 \leq x<1 / 2=0+1 / 2=s_{1}+1 / 2
$$

as desired. Suppose $1 / 2 \leq x \leq 1$. Then $s_{1}=1 / 2$. So

$$
s_{1}=\frac{1}{2} \leq x \leq 1=\frac{1}{2}+\frac{1}{2}=s_{1}+\frac{1}{2}
$$

as well. This establishes the base case.
Suppose for some $n \in \mathbb{N}$ that

$$
s_{n} \leq x \leq s_{n}+\frac{1}{2^{n}} .
$$

Recall that

$$
x_{n+1}= \begin{cases}0 & x<s_{n}+\frac{1}{2^{n+1}} \\ 1 & \text { otherwise }\end{cases}
$$

We consider two cases. Suppose $x<s_{n}+1 / 2^{n+1}$. Then $x_{n+1}=0$ and $s_{n+1}=s_{n}$. From the induction hypothesis we then conclude that

$$
s_{n+1}=s_{n} \leq x \leq s_{n}+\frac{1}{2^{n+1}}=s_{n+1}+\frac{1}{2^{n+1}} .
$$

Now suppose $x \geq s_{n}+1 / 2^{n+1}$. Then $s_{n+1}=s_{n}+1 / 2^{n+1}$. But then again by the induction hypothesis

$$
s_{n+1}=s_{n}+\frac{1}{2^{n+1}} \leq x \leq s_{n}+\frac{1}{2^{n}}=s_{n}+\frac{1}{2^{n+1}}+\frac{1}{2^{n+1}}=s_{n+1}+\frac{1}{2^{n+1}} .
$$

Having established the claim, we now prove that $\left\langle x_{n}\right\rangle_{n=1}^{\infty}=x$. Let $S=\left\{s_{n}: n \in \mathbb{N}\right\}$ so $\left\langle x_{n}\right\rangle_{n=1}^{\infty}=\sup S$. Since $s_{n} \leq x$ for every n, we know that x is an upper bound for S. Now suppose $y<x$. Then $x-y>0$ and there exists $n \in \mathbb{N}$ such that $1 / 2^{n}<x-y$. Since

$$
x \leq s_{n}+\frac{1}{2^{n}}<s_{n}+x-y
$$

we may add $y-x$ to both sides of the inequality to conclude that

$$
y<s_{n} .
$$

So y is not an upper bound for S. Thus every upper bound z for S satisfies $x \leq z$ and $x=\sup S$.

Hence we have shown that every $z \in[0,1]$ admits a binary expansion. The next proposition shows that most of the time, different sequences lead to different numbers in $[0,1]$. The only way two different expansions generate the same real number is when one expansion is

$$
0 . x_{1} \cdots x_{N-1} 0111 \cdots
$$

and the second is

$$
0 . x_{1} \cdots x_{N-1} 1000 \cdots
$$

Proposition Binary 2: Suppose $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are distinct sequences of 0's and 1's and let N be the first index where $x_{n} \neq y_{n}$, and suppose that $x_{N}=0$ and $y_{N}=1$. If

$$
\left\langle x_{n}\right\rangle_{n=1}^{\infty}=\left\langle y_{n}\right\rangle_{n=1}^{\infty}
$$

then $x_{n}=1$ for all $n>N$ and $y_{n}=0$ for all $n>N$.
Proof. We start by establishing some notation. Let

$$
X=\left\langle x_{n}\right\rangle_{n=1}^{\infty}, \quad Y=\left\langle y_{n}\right\rangle_{n=1}^{\infty} .
$$

Let $s_{n}=\sum_{k=1}^{n} x_{k} / 2^{k}$ and let $t_{n}=\sum_{k=1}^{n} x_{k} / 2^{k}$, and let $S=\left\{s_{n}: n \in \mathbb{N}\right.$ and $T=t_{n}: n \in \mathbb{N}$. Then $X=\sup S$ and $Y=\sup T$.
Since $x_{k}=y_{k}$ for $k<N$, and since $x_{N}=0$ and $y_{N}=1$,

$$
T_{N}=s_{N}+\frac{1}{2^{N}}
$$

Suppose for some $m>N$ that $y_{m}=1$ or $x_{m}=0$. Then for $n>m$

$$
\begin{aligned}
\sum_{k=N+1}^{n} \frac{x_{k}-y_{k}}{2^{k}} & \leq\left[\sum_{k=N+1}^{n} \frac{1-0}{2^{k}}\right]-\frac{1}{2^{m}} \\
& =\frac{1}{2^{N}}\left[\sum_{k=N}^{n-N} \frac{1}{2^{k}}\right]-\frac{1}{2^{m}} \\
& <\frac{1}{2^{N}} \cdot 1-\frac{1}{2^{m}} .
\end{aligned}
$$

Hence if $n>m$,

$$
t_{n}-s_{n}=t_{N}-s_{N}-\sum_{k=N+1}^{n} \frac{x_{k}-y_{k}}{2^{k}}=\frac{1}{2^{N}}-\sum_{k=N+1}^{n} \frac{x_{k}-y_{k}}{2^{k}}>\frac{1}{2^{N}}-\frac{1}{2^{N}}+\frac{1}{2^{m}}=\frac{1}{2^{m}} .
$$

That is, if $n>m$, then

$$
t_{n}>s_{n}+\frac{1}{2^{m}} .
$$

Since Y is the supremum of the set $T, Y \geq t_{n}$ for all n and

$$
Y \geq s_{n}+\frac{1}{2^{m}}
$$

for all $n>m$. Since the sequence $\left\{s_{n}\right\}$ is increasing we conclude that this same inequality holds for all $n \in \mathbb{N}$ hance hence $Y-\frac{1}{2^{m}}$ is an upper bound for the set S. But then

$$
Y-\frac{1}{2^{m}} \geq \sup S=X
$$

and therefore $Y>X$. Thus, if $Y=X$, we conclude that for all $n>N, x_{n}=1$ and $y_{n}=0$.

