
Math F314: Linear Algebra Lab 2: Fourier Basis

Overview

Suppose we have a sequence of measurements made at equally spaced times. For example

• Temperature at Fairbanks International Airport measured every hour.

• Atmospheric pressure at the surface of a microphone measured 44100 times a second.

• Population size of a herd of caribou measured monthly.

AftermakingN suchmeasurements, we obtain anN-dimensional vector of data called a time series.
Its �rst component is the �rst measurement, and its last component is the last measurement. In this
lab we will examine a basis for RN that is useful for analyzing time series data.

Before starting this lab, you should follow the instructions on the web page for creating a “path” in
Octave to tell it about places where to look for data �les, scripts, and new functions. Then download
the data �le lab2.mat from the course web page and save it to a location in Octave’s path. To load
the data, use the command

load lab2

Don’t worry if you see a warning about a load path; that’s normal. You can verify you loaded the
data set for this lab by typing who at the Octave prompt. This command lists all the currently known
variables. If you have loaded the �le correctly, you will then have the variables

• data16

• data256

• data sound

Please consult with me if you have trouble loading the data �le into Matlab or Octave.

The exercises in this lab all have a lot of text in them. You’ll need to read them carefully to determine
what to hand in for your answers. Key words include “write”, “explain”, and “draw”. These are all
asking you to do something. Any questions asked in the exercise must be answered (look for the
question marks!). There are only two Octave-generated graphs that need to be handed in; look for
the words “Attach a plot” in the exercise.

Exercise 1: The variable data16 contains 16 measurements. To visualize it, we don’t think of it as a
geometric vector in R16. Instead, we plot the measurements as a function of time (or of the sample
index). Do this for yourself using plot(data16). We can express data16 in terms of the standard
basis for R16:

data16 = x1e1 +⋯xnen .

What is the speci�c value of x5 in this case? What does x5 tell you?

Exercise 2: Many time-series measurements can be thought of as a sum of oscillations at di�erent
frequencies. For example, a caribou population can be expected to oscillate over a period of one
year due to annual season changes, but might also undergo oscillations over a �fty-year time period
due to longer-term e�ects.
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In this lab we will look at a basis for RN that allows us to pick data apart into pieces oscillating at
di�erent frequencies. To begin, we need a nice way to represent the times corresponding to the
measured data samples. We will scale time so that the measurements occur over the time interval
[0, 1]. If there are N samples, we will break this interval up into N subintervals. And we will assume
that each sample occurs at themiddle of its corresponding time interval.

Under these hypotheses, write down the sample times for N measurements in the following cases:
N = 1, N = 2, N = 3, and N = 4. In the N = 4 case, also draw a schematic diagram of the interval
[0, 1] broken into time intervals, with each of the sample times marked with an asterisk.

Exercise 3:Write down a formula for sample time tk assuming that there are N samples, starting at
k = 1 and ending at k = N .

Exercise 4: Write dow a one-line Matlab command that you could use to build the vector of sam-
ple times t16 corresponding to data16. Your command should involve the vector [0:15]’. For
yourself, plot(t16,data16). What’s di�erent between this plot and the one you made in Exercise
1?

Exercise 5: For yourself, plot each of the following vectors:

• g1 = cos( 0 * pi * t16 )

• g2 = cos( 1 * pi * t16 )

• g3 = cos( 2 * pi * t16 )

• g4 = cos( 3 * pi * t16 )

In general, let gk = cos((k − 1) * pi * t16).

1. What frequency does gk oscillate at? Recall that frequency is the reciprocal of the period.

2. How many total peaks and troughs do you expect that gk has over the time interval [0, 1]?

3. Why does gk look jaggier as k goes up?

4. Plot g17 for yourself. Then explain what you see. A full answer does not just describe the
graph, but also gives an explanation for why it is what it is. Be sure you look at the scale on
the y-axis. It might be helpful to compare the graph of g17 to some of the earlier gk’s. Keep
in mind that the diameter of the nucleus of a gold atom is about 10−14 meters.

Exercise 6:We will now show that the 16 vectors g1 through g16 form a basis forR16. The �rst step
is to make a matrix G such that column k of G is gk. Here’s a slick way to do this. Let

T = t16 ∗ [0 ∶ 15] ∗ pi.

How is column k of T related to t16? Write down a one-lineMatlab command that builds thematrix
G. Verify for yourself that you have the right matrix by comparing the plots of G(:,1), G(:,2),
G(:,3), and G(:,4) with those of g1, g2, g3, g4.
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Exercise 7: Since G is a 16 × 16 matrix, its columns form a basis for R16 if the matrix is invertible.
One way to test this is do compute the reduced row echelon form of G. Do this using rref and check
that you obtain the identity matrix. Then explain clearly why it would be enough simply to verify
that the lower-right entry is a 1.

Exercise 8: Since the gk’s form a basis for R16, every vector b in R16 can be written uniquely in the
form

b = x1 g1 +⋯ + x16 g16
for certain scalars x1, . . . , x16. To get a feeling for what a representation of this type means, plot for
yourself 3*g1 + 1/2*g4 - 1/8*g10. You can do this using

b = 3 ∗ G(∶, 1) + (1/2) ∗ G(∶, 4) − (1/8) ∗ G(∶, 10)
plot(t16, b)

What part of the resulting graph does the term 3*g0 contribute? What about 1/2*g3? What about
-(1/8)*g10? You might �nd it easiest to answer these questions by making (for yourself) graphs
that exclude one or more of the three terms.

Exercise 9: Suppose we want to �nd scalars xi such that

data16 = x1 g0 +⋯ + x16 g15.

Write this problem down as a matrix problem involving G.

Exercise 10: To solve this problem we would normally use a method like LU factorization. But in
this case, G has a very nice inverse. Compute G’*G in Matlab and then describe all of the entries. Be
careful: one entry is di�erent from all the others. This exercise shows that G−1 is nearly the same as
GT .

Exercise 11: What is the value of the dot product gi ⋅ g j? Your answer should depend on i and j.
Give an explicit formula. Hint: this has something to do with the previous Exercise.

Exercise 12: Find a diagonal matrix S such that F = G ∗ S satis�es F−1 = FT . Write down the Matlab
commands you used to build S (your answer must involve the Matlab command eye). How is each
column of F related to the corresponding column of G? Why are we multiplying G on the right and
not on the left?

Exercise 13:The columns of F are known as the Fourier basis forR16. They are better-scaled vectors
from the original basis g1 through g16 you were working with before. I’ll use the notation f1

through f16 to denote this new basis.

Given a vector d in R16 we can write

d = x1 f1 +⋯ + x16 f16

for unique numbers x1 through x16. To compute these numbers, we would need to solve

F ∗ x = d.

But since F−1 = FT , the solution is simply

x = F′ ∗ d.
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The vector x is called the Fourier transform of d.

Notice the very nice time savings. About how many multiplications would it take to solve F*x = d

using LU-factorization? How many multiplications does it take to compute F’*d?

Exercise 14: If I give you the Fourier transform x, how can you reconstruct d using F?

Exercise 15: Let x = F’ * data16 be the Fourier transform of data16. We want to examine what
happens as we build up data16 from x by addingmore andmore terms.That is, wewant to consider
the vectors

y1 = x(1) ∗ F(∶, 1)
y2 = x(1) ∗ F(∶, 1) + x(2) ∗ F(∶, 2)
y3 = x(1) ∗ F(∶, 1) + x(2) ∗ F(∶, 2) + x(3) ∗ F(∶, 3)

and so forth. What does the graph of y1 look like? How are y16 and data16 related?

Exercise 16: Create the variables y1, y3, and y5 according to the formulas above.The visualize them
(for yourself) as follows:

plot([data16, y1, y3, y5])

This plots the original data vector and then the three approximations obtained by adding up the �rst
view terms. Explain what you see in your plots as you add more terms of the Fourier basis vectors
to your graphs.

Exercise 17: Enter the following Matlab commands

z = x
z(9 ∶ 16) = 0

How is z di�erent from x? Then enter the following Matlab commands

w = x
w(1 ∶ 8) = 0

How is w di�erent from x? What is w + z? What is F(w)+F(z)?

Exercise 18: Now plot([data16,F*z,F*w]). What e�ect does leaving out early terms from the
Fourier basis have? What e�ect does leaving out later terms have?

Exercise 19: Enter the following Matlab commands.

x = zeros(16, 1)
x(2) = 1
x(15) = −.5
d = F ∗ x

For yourself, separately plot the Fourier transform x and the data vector d. Notice that data vector
is a sum of a low frequency component and a high frequency component. How can you tell this by
looking at the graph of the Fourier transform?
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Exercise 20:The data vector data256 contains 256 measurement samples. Describe all of the Mat-
lab command you would use to construct the 256 × 256 matrix F256 corresponding to the 16 × 16
matrix F we have been working with. You should give commands to make

• t256 corresponding to t16

• G256 corresponding to G

• S256 corresponding to S

• F256 corresponding to F

Now explain two di�erent ways you could verify that the columns of F256 are a basis for R256.

Exercise 21: The measurement samples in data256 have been contaminated by noise. We can use
the Fourier transform to implement a low-pass �lter, which allows low frequency components to
pass through but removes high frequency components. This will eliminate the high frequency noise
in the signal. Write downMatlab commands that use F256 and that removemuch of the noise from
the data. Attach a plot of the original data and your version with the noise removed.

Exercise 22:The vector data sound contains 8820 samples corresponding to 1/5 of a second of me
trying to sing a note. We would like to analyze it using the Fourier basis, but the methods we have
been using are not e�cient enough. For example, the matrix F8820 would needlessly take up over
half a gigabyte of memory. Computing

F8820′ ∗ data sound

would take roughly 88202 ≈ 108 multiplications. This is far better than the 88203/3 ≈ 1011 multipli-
cations required by LU factorization, but is still a bit large.

I need to confess at this stage I’ve been telling you a white lie. The transform we are using here is
called the discrete cosine transform. The Fourier transform is a similar, but more complex ob-
ject. In practice, discrete cosine transforms are computed using a fantastic algorithm called the Fast
Fourier Transform, which requires only O(N log(N))multiplications. Note that 8820 log(8820) ≈
3.5 ⋅ 104, which is dirt cheap!

Those of you using Matlab (not Octave) can compute discrete cosine transforms, based on the Fast
Fourier Transform, using the command dct. You can convert transform data back into time-series
data using the command idct (inverse discrete cosine transform). There are also o�cial versions
of dct and idct for Octave, but they are a hassle to install. I have posted on my web page cheesy
versions of these functions.They work, and they don’t use up excessivememory, but they areO(N2)
algorithms, notO(N log(N)) algorithms. Please see the instructions on the courseweb page onhow
to install these �les if you are using Octave.

Do the following (assuming you still have the matrix F you computed earlier still in memory):

x16 dct = dct(data16)
x16 = F′ ∗ data16
plot([x16, x16 dct])
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and verify that the vectors x16 dct and x16 are the same. The algorithm in dct is exactly what we
have beendoing (ine�ciently).Then compute the discrete cosine transformx soundofdata sound.
Plot x sound for yourself, and then describe the features of the plot.

Exercise 23:What is the sample rate of the audio data in data sound? Your answer should be in Hz.

Exercise 24:What is the period and the frequency of the function f4 in this case? Itmight be helpful
to go look at how you found your answer to Exercise 5. But keep in mind that for that problem we
assumed time was scaled so that all the data was sampled between t = 0 and t = 1. You’ll need to
adjust this scaling to get a meaningful answer.

Exercise 25: What are all of the dominant frequencies in the audio sample? That is, what are the
frequencies associated with the spikes? What note was I trying to sing? Provide justi�cation for
your answers using the tools developed in this lab. Keep in mind your answer to Exercise 24.

Exercise 26:Thinking of the audio sample, notice that the discrete cosine transformof the full signal
is nearly zero for most of the frequencies. If we needed to transmit (or store) this signal, we don’t
really need all 8820 components of data sound. We could transmit (or store) just 1000 numbers
instead. What 1000 numbers should we store? How would we reconstruct the signal based on those
1000 numbers? Attach a plot of the �rst 4 milliseconds of the reconstructed and original signal.

This principle underlies many techniques of “lossy compression”. High frequencies are omitted with
the expectation that they carry little data. The JPEG image standard uses a two dimensional discrete
cosine transform applied to little 8x8 tiles in the picture. The MP3 audio format uses a variation of
the discrete cosine transform as well.
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