- 1. Ice is growing over a pond. The thickness of the ice is given by $D(t) = \sqrt{t}$ where D is measured in centimeters and $t \ge 0$ is measured in days.
 - a) What is the average rate of change of the ice thickness over the time interval $t \in [1, 1 + h]$? What are the units of your answer?
 - b) Write the value of the instantaneous rate of change of the ice thickness at time t = 1 as a limit involving your answer to part a).
 - c) Compute the value of the limit to exactly compute the instantaneous rate of change at time t = 1.
 - d) Repeat the previous steps for time t = 0 rather than time t = 1.
 - e) Sketch the curve $D(t) = \sqrt{t}$ and explain why your answer to part d) is reasonable.
- **2.** Consider the function $f(x) = |x \sin(x)|$.
 - a) Sketch the graph of f(x) for $-2\pi \le x \le 2\pi$.
 - b) Why is $f(x) \leq |x|$?
 - c) Why is $f(x) \ge 0$?
 - d) On the same graph as part a), add the graphs of functions g(x) = |x| and h(x) = 0. Add these two graphs in a different color.
 - e) Compute $\lim_{x\to 0} g(x)$ and $\lim_{x\to 0} h(x)$.
 - f) What does the Squeeze Theorem now imply?
- **3.** Let $f(x) = |x| \cos(x)$. Follow a similar recipe to problem 3 to use the Squeeze Theorem to compute $\lim_{x\to 0} f(x)$. You must figure out functions g(x) and h(x) for yourself and explain why $g(x) \le f(x) \le h(x)$. You should also graph all three functions for $-2\pi \le x \le 2\pi$.
- 4. Suppose

$$f(x) = \begin{cases} 3x - 1 & x < 1 \\ (x - a)^2 & x \ge 1 \end{cases}$$

where *a* is some number that you don't know. Compute $\lim_{x\to 1^-} f(x)$ and $\lim_{x\to 1^+} f(x)$. For what choices of *a* is f(x) continuous?