- **1.** Carothers 11.52
- 2. Carothers 11.58
- 3. Let K(x, t) be a continuous function on $[0,1] \times [0,1]$. For $f \in C[0,1]$ define a function T(f) on [0,1] by $(Tf)(x) = \int_0^1 K(x, y)f(y) dy$.
 - a) Show that $Tf \in C[0,1]$ if $f \in C[0,1]$.
 - b) Suppose (f_n) is a bounded sequence in C[0,1]. Show that (Tf_n) has a (uniformly) convergent subsequence.
- **4.** Suppose $f \in \text{Riem}[a, b]$ and $\alpha \in \mathbb{R}$. Show that $\alpha f \in \text{Riem}[a, b]$ and

$$\int_a^b \alpha f = \alpha \int_a^b f$$

- **5.** Show that the uniform limit of Riemann integrable functions is Riemann integrable. Conclude that Riem[*a*, *b*] is a closed subset of *B*[*a*, *b*].
- **6.** Find (with proof) an element of Riem[a, b] that is not a uniform limit of step functions.