- **1.** Suppose $f : X \to X$ is Lipshitz continuous with Lipschitz constant K < 1. Show that if Y is complete, then there is a unique $x \in X$ solving f(x) = x. Hint: Starting from any x_0 , let $x_{n+1} = f(x_n)$. Show the sequence is Cauchy.
- **2.** Show that a space *X* is topologically compact if and only if whenever $\{F_{\alpha}\}_{\alpha \in I}$ is a family of closed sets in *X* with the finite intersection property, $\cap F_{\alpha} \neq \emptyset$.
- 3. In this problem, we will seek a solution to the initial value problem

$$f'(t) = F(t, f(t))$$
$$f(0) = a$$

where $F : \mathbb{R}^2 \to \mathbb{R}$ and $a \in \mathbb{R}$.

To obtain the existence result, we need to assume that F is sufficiently nice; we will assume that F is continuous, and moreover that there exists a constant K such that

$$|F(x, y_1) - F(x, y_2)| \le K|y_1 - y_2|$$

for all $x, y_1, y_2 \in \mathbb{R}$.

Define $G: C[-T, T] \rightarrow C[-T, T]$ by

$$G(f)(t) = a + \int_0^t F(s, f(s)) \, ds.$$

- a) Explain why $G(f) \in C[-T, T]$ if $f \in C[-T, T]$.
- b) Show that if f solves the initial value problem for $t \in [-T, T]$, then G(f) = f.
- c) Show that *G* is Lipschitz with Lipschitz constant *TK*.
- d) Assuming T < 1/K, show that there exists a solution of G(f) = f defined for $t \in [-T, T]$. You may use the fact that C[-T, T] is complete; we'll show this later.
- e) Assuming T < 1/K, show that there exists a unique solution of the initial value problem defined on (-T, T).
- f) Extra credit: Show that there exists a solution f of the initial value problem defined for all $t \in \mathbb{R}$.
- 4. Carothers 7.32
- 5. Carothers 8.13
- 6. Carothers 8.16
- **7.** Carothers 8.17

8. Show that $A \subseteq \mathbb{R}^n$ is compact in the ℓ_{∞} norm if and only if it is closed (with respect to the ℓ_{∞} norm) and bounded (with respect to the ℓ_{∞} norm).

What does this say about compactness with respect to the ℓ_2 norm?

- **9.** Carothers 8.29
- **10.** Carothers 8.38
- **11.** Carothers 8.40
- **12.** Carothers 8.78