- **1.** Let *A* be a continuous operator on the Hilbert space *X*. Show $(A^*)^* = A$.
- 2. D&M 4.4b, c (Note that we effectively already proved part a early on in the semester.)
- **3.** D & M 4.23
- 4. Suppose *A* is a continuous operator on the Hilbert space *X*. Show

$$\operatorname{Image}(A)^{\perp} = \operatorname{Ker}(A^*)$$

and

$$\operatorname{Ker}(A)^{\perp} = \overline{\operatorname{Image}(A^*)}$$

- **5.** Let *I* be a bounded open interval and let $f \in L^1(I)$. Suppose $\int f \psi = 0$ for all $\psi \in \mathcal{D}(I)$.
 - a) Conclude that $\int_J f = 0$ for all closed intervals $J \subseteq I$. (Hint: Homework 8, problem 6).
 - b) Conclude that $\int_E f = 0$ for all measurable sets $E \subseteq I$. (Hint: Approximate *E* with finitely many closed intervals and take advantage of Carothers 18.17, which you have already proved.)
 - c) Conclude that f = 0 almost everywhere on *I*.