- 1. (Solution by David Maxwell) Suppose X is a normed space and $W \subseteq X$ is a subspace. Show that \overline{W} is a subspace.
- **2.** (Solution by TJ Barry) Suppose *X* is a Banach space. Let $I : X \to X$ be the identity operator.
 - a) Show that if $T \in \mathcal{B}(X, X)$ and ||I T|| < 1, then *T* is invertible. Hint: Consider the Taylor series for 1/(1 x).
 - b) Show that the set of invertible elements of $\mathcal{B}(X, X)$ is open.
- **3.** (Solution by Lyman Gilispie)

Let *X* and *Y* be vector spaces and let $\mathcal{B} = \{x_{\alpha}\}_{\alpha \in I}$ be a basis for *X*. Given a map $F : \mathcal{B} \to Y$, show that there exists a unique linear map $T : X \to Y$ such that $T|_{\mathcal{B}} = F$.

Moral: A linear map is completely specified by it is action on a basis.

- 4. (Solution by David Maxwell)
 - a) Given an *n*-dimensional vector space X over \mathbb{R} , show that there exists a (real) linear isomorphism between X and \mathbb{R}^n .
 - b) If X is a real or complex normed vector space and $T : \mathbb{R}^n \to X$ is an injective real-linear map, show that $\|\cdot\|_T$ on \mathbb{R}^n defined by $\|x\|_T = \|Tx\|_X$ is a norm on \mathbb{R}^n .
 - c) Show that if *X* is a real or complex normed vector space, then any two norms on *X* are equivalent.
- 5. (Solution by Vikenty Mikheev) Suppose X is a finite dimensional normed vector space and W is a proper subspace of X. Show that there exists an $x \in X$ with ||x|| = 1 and $d(x, w) \ge 1$ for all $w \in W$.
- **6.** (Solution by Will Mitchell) Suppose p > 1 and $\frac{1}{p} + \frac{1}{q} = 1$. Given $y \in \ell_q$, and $x \in \ell_p$ let

$$T_{y}(x) = \sum_{k=1}^{\infty} x_{k} \overline{y_{k}}.$$

We will prove in class that T_{y} is well defined, linear, and continuous.

- a) Show that $||T_y|| = ||y||_{\ell_a}$ for all $y \in \ell_q$.
- b) Given $S \in \mathcal{B}(\ell_p, \mathbb{C})$, show that $S = T_y$ for some $y \in \ell_q$.
- c) Show that ℓ_p is complete for all $p \in (1, \infty)$.