1. Suppose α , β , and γ are continuous on [a, b] and $\alpha \neq 0$. Given $x_0, v_0 \in \mathbb{R}$, and $f \in C[a, b]$, show that there exists a unique $u \in C^2[a, b]$ such that

$$\alpha u'' + \beta u' + \gamma u = f$$

satisfying $u(b) = x_0$ and $u'(b) = v_0$.

2. Suppose $\{u_k\}$ is an orthonormal basis for a Hilbert space *X*, let $\{b_k\} \in \ell_2$, and let $\{c_k\}$ be a bounded sequence in $C^2[a, b]$. Show that

$$v(t) = \sum_{k=1}^{\infty} b_k c_k(t) u_k$$

is a well defined function from $\mathbb R$ to X Moreover, it is differentiable and

$$v'(t) = \sum_{k=1}^{\infty} b_k c'_k(t) u_k$$

You should decide for yourself what differentiability means in this context.

- 3. D & M 6.15
- **4.** Let $T: L^2_{\omega} \to L^2_{\omega}$ be the compact operator we constructed in class for solving the equation

$$-\frac{1}{\omega}Lu = f \tag{1}$$

together with separated boundary conditions. We showed that if f is continuous then Tf is a C^2 solution of this problem. Now show that if $f \in L^2_{\omega}$, then u solves equation (1) in the sense of distributions, and that $u \in H^2([a, b])$. Hint: approximate f with continuous functions.

5. Suppose $\Omega \subseteq \mathbb{R}^n$ is open and $f \in L^1_{loc}(\Omega)$. Show that the map $T_f : \mathcal{D}(\Omega) \to \mathbb{F}$ given by

$$T_f(\phi) = \int_{\Omega} f\phi$$

is an element of $\mathcal{D}'(\Omega)$.

The following problem is part of the take-home final. You can start thinking about it now.

6. Suppose $p \in C^1[a, b]$. Show that given $f \in L^2[a, b]$, and T > 0, there exists a function $u : [0, T] \rightarrow L^2[a, b]$ such that

1. u(0) = f.

- 2. u is continuous on [0, T].
- 3. u is differentiable on (0, T].
- 4. $\frac{d}{dt}u = (pu')'$; the derivative on the right is in the sense of distributions.
- 5. For all t > 0, u(t, a) = 0 = u(t, b).