1. (Solution by TJ Barry) Suppose $K \in L^2([0,1] \times [0,1])$. Define $T : L^2([0,1] \rightarrow L^2([0,1]))$ by

$$(Tf)x = \int_0^1 K(x, y)f(y) \, dy.$$

Show that *T* is compact. Feel free to use the results of Examples 4.2.4 and 4.8.4 (which we effectively proved in class).

- **2.** Let *X* be a Hilbert space. We say a linear map *T* is bounded below if there exists a constant *c* such that $||Tx|| \ge c||x||$ for all $x \in X$. Show that if $T : X \to X$ is linear and continuous, it is invertible if and only if it is bounded below and onto a dense subspace.
- 3. (Solution by Will Mitchell) Let $\{\lambda_k\}$ be a bounded sequence. Define $T : \ell_2 \to \ell_2$ by

$$T(x) = (\lambda_1 x_1, \lambda_2 x_2, \ldots).$$

It is easy to see that *T* is continuous; don't show this. Instead, determine $\sigma_p(T)$ and $\sigma(T)$.

4. (Solution by David Maxwell) D&M 4.51