
Math F302: Octave Miscellany September 14, 2011

Definite Integrals

Despite your training in Calculus,most definite integrals cannot be computed exactly, and
must be approximated numerically. You learned a number of rules for doing this: the trape-
zoidal rule and Simpson’s rule come to mind. These are tedious computations that are best
left to a machine.

Octave has an algorithm for computing numerical approximations of definite integrals. Sup-
pose we want to compute

∫
3

0
e1−x3 dx .

Here’s how to find a numerical approximation with Octave

octave-3.2.3:3> f=@(x) exp(1-x.^3)

f =

@(x) exp (1 - x .^ 3)

octave-3.2.3:4> quad(f,0,3)

ans = 2.4274

The first argument to quad is the function to integrate, the second is the lower bound of
integration, and the third is the upper bound of integration.

Area-Under-The-Curve Functions

In this course we keep running into area-under-the-curve functions. For example, consider

F(x) = ∫
x

3
sin(
√
1 + s2) ds

This is an unusual looking function. The value F(3) = 0 since ∫
3
3 sin(

√
1 + s2) ds = 0. The

value F(4) is ∫
4
3 sin(

√
1 + s2) ds. Although we cannot compute this value exactly, we can

obtain a numerical approximation with Octave using the quad function.

octave-3.2.3:14> f=@(x) sin(sqrt(1+x.^2));

octave-3.2.3:15> quad(f,3,4)

ans = -0.46060

If we need to evaluate the area-under-the-curve function at a lot of different points, we can
make an Octave function to help out:

octave-3.2.3:26> f=@(x) sin(sqrt(1+x.^2));

octave-3.2.3:27> F=@(x) quad(f,3,x);



Math F302: Octave Miscellany September 14, 2011

octave-3.2.3:28> F(3)

ans = 0

octave-3.2.3:29> F(4)

ans = -0.46060

Unfortunately, we cannot feed F a vector:

octave-3.2.3:30> F([0,1,2,3])

warning: implicit conversion from real matrix to real scalar

ans = -2.2656

Frankly, this should have been an error message. Octave is complaining that it can’t have a
vector as the upper bound of integration: quad(f,0,[0,1,2,3]) doesn’t make sense. To
make a vector containing [F(0),F(1),F(2),F(3)] we can use the arrayfun command.
Consider:

octave-3.2.3:32> x=[0,1,2,3]

x =

0 1 2 3

octave-3.2.3:33> arrayfun(F,x)

ans =

-2.26556 -1.36100 -0.41686 0.00000

versus

octave-3.2.3:34> [F(0),F(1),F(2),F(3)]

ans =

-2.26556 -1.36100 -0.41686 0.00000

In general, the result of arrayfun(f,x) is a vector of the same size as x with the function
f applied to each entry of x. This is helpful for plotting area-under-the-curve functions:

octave-3.2.3:37> x=0:0.01:5;

octave-3.2.3:38> plot(x,arrayfun(F,x))

which generates:

2



Math F302: Octave Miscellany September 14, 2011

-2.5

-2

-1.5

-1

-0.5

0

0.5

0 1 2 3 4 5

Finding Roots

Octave has a function that can (often) find a numerical approximation of a solution of an
equation of the form

f (x) = 0.
For example, suppose we want to find the solution of the equation

x3 + 2x2 = 1.

This equation can be rewritten as

x3 + 2x2 − 1 = 0.

So we want to solve f (x) = 0 where f (x) = x3 + 2x2 − 1. It will be helpful to look at a graph
of f .

octave-3.2.3:76> x=-2:0.01:1.5;

octave-3.2.3:77> plot(x,f(x))

octave-3.2.3:78> grid

-2

0

2

4

6

8

-2 -1.5 -1 -0.5 0 0.5 1 1.5

This is a cubic polynomial, and we see that there are three roots, one each near -1.6, -1, and
0.6. To find a root we use fzero, which takes two arguments: the function, and an initial
guess for the root. For example, to find a root near x = 0.5 we use:

3



Math F302: Octave Miscellany September 14, 2011

octave-3.2.3:80> f=@(x) x.^3 + 2*x.^2-1

f =

@(x) x .^ 3 + 2 * x .^ 2 - 1

octave-3.2.3:81> fzero(f,0.5)

ans = 0.61803

You can see more digits in your answers by adjusting the formatting:

octave-3.2.3:82> fzero(f,0.5)

ans = 0.61803

octave-3.2.3:83> format long

octave-3.2.3:84> fzero(f,0.5)

ans = 0.618033988749895

The other two roots can be found as follows:

octave-3.2.3:84> fzero(f,-0.5)

ans = -1

octave-3.2.3:85> fzero(f,-1.5)

ans = -1.6180

Making Scripts

A script in Octave is a sequence of commands to be run in order. For example, we might
want to make a nice graph of the function F(x) = ∫

x
0 e−s2 ds over the interval −2 ≤ x ≤ 2.

The commands are:

f = @(x) exp(-x.^2);

F = @(x) quad(f,0,x);

x=-2:0.01:2;

plot(x,arrayfun(F,x));

title(’The Error Function’)

grid

If you save these commands in a script you can make changes to them later if, for exam-
ple, want to adjust the title or change the domain. To do this, you’ll need a text editor. On
Windows, Notepad will do. On the Mac, you can use TextEdit. Open your application and
enter the commands above. If you are using the TextEdit, you’ll also need to select “Make
Plain Text” from the “Format” menu (or change this preference permanently under “Pref-
erences”). Now save the document as myplot.m in a location that Octave knows about (via
its path). The directory where you saved your file df.m will work, for example. Now within

4



Math F302: Octave Miscellany September 14, 2011

Octave you can simply type myplot and your plot will appear. If you adjust the commands
in the file myplot.m and rerun myplot in Octave, a new plot will appear. The plot from
these commands looks as follows:

-1

-0.5

0

0.5

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

The Error Function

Exercises

Exercise 1:

Compute ∫
5
−3 x cos(x) dx.

Exercise 2:

Let F(x) = ∫
x
0

√
1 + cos(s) ds. Compute F(2). Graph this function for 2 ≤ x ≤ 4.

Exercise 3:

Let F(x) = ∫
x
0 e−x2 ds. Find an x such that F(x) = 0.8.

Exercise 4:

Make a script that plots the function F(x) from Exercise 3 on the domain −1 ≤ x ≤ 2, puts
a blue square on the location (x , F(x)) where x is the solution of F(x) = 0.8, and adds a
grid. Run your script to make sure it works. Then edit it to add a red square at the location
(x , F(x)) where x is the solution of F(x) = 0.4

Your final plot should look like

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1 1.5 2

5


